Tag: keenlyside

Scientific breakthrough: Winter climate in Norway now more predictable

Scientists from the Bjerknes Climate Prediction Unit, affiliated with the Nansen Environmental and Remote Sensing Center, the Bjerknes Centre for Climate Research, and the University of Bergen, contributed to a recent publication in Nature. The results indicate that it is possible to predict how the atmospheric circulation above the North Atlantic will evolve during the next decade. This is crucial for better predicting the winters in Europe and Eastern North America.

Figure 1: Rainfall variation over Northern Europe between 1960 and 2005. e) shows observations (black) and modelled predictions (red) with uncertainty range (shaded red) without adjustments, f) shows the improved and adjusted modelled predictions and uncertainty range.
Figure 1: Rainfall variation over Northern Europe between 1960 and 2005. e) shows observations (black) and modelled predictions (red) with uncertainty range (shaded red) without adjustments, f) shows the improved and adjusted modelled predictions and uncertainty range.

Investigating the climate of the past

In order to look forward in time, looking at the past is helpful. This is true in many cases, and the researchers behind this study led by the UK Met Office made use of this principle. They used climate models for investigating how accurately climate can be predicted on a decadal scale over the past sixty years.

Sea level pressure above the North Atlantic influences Norwegian winters

The main pattern of changes in sea level pressure above the North Atlantic, called the North Atlantic Oscillation (NAO), influences the wind and storms over the North Atlantic, which in turn influences the winter weather in Europe and Eastern North America. Two extremes are possible for winters in these regions: stormy, warm, and wet, or calm, cold, and dry. Which extreme the winter weather will tend towards is now shown to be very predictable on a decadal scale, according to the new study.

The researchers investigated the North Atlantic Oscillation and its influence by producing retrospective forecasts of the past climate (called hindcasts) and comparing them to observations made in the past. That way they quantified how accurate the model predictions are.

One of the most important predictions for Europe and especially Norway is the amount of rainfall. The comparison between hindcasts produced by models (Figure f, red line) and the observation (Figure f, black line) shows that the rainfall over Northern Europe can be predicted with high certainty. The model results match the previous observations nicely.

Contribution from the Bjerknes Climate Prediction Unit

Many hindcasts were produced by different research groups worldwide. The different climate models from these groups are part of t experiments performed for the last and upcoming Intergovernmental Panel on Climate Change (IPCC) reports. Bergen researchers involved in the study are the following: Noel Keenlyside (UiB/NERSC), François Counillon (NERSC), Ingo Bethke (UiB), and Yiguo Wang (NERSC). The four are part of the Bjerknes Climate Prediction Unit at the Bjerknes Centre for Climate Research. They used their climate model, the Norwegian Climate Prediction Model (NorCPM), which is part of CMIP6, to contribute to this study.

Climate models need to be improved

Apart from the high predictability of the North Atlantic climate indicated by the hindcasts, the study also shows that current climate models are underestimating this exact fact (Figure e). The researchers identified this deficiency and show that climate models need to be and can be adjusted (Figure f) to better predict the behaviour of the pressure above the North Atlantic and in turn the future winter conditions in Europe and Eastern North America.

To sum it up, confidently predicting the winters of the next years for Norway is now a reality, but climate models need to be improved.

Significance of this study: Climate can now be better predicted on short time scales

Noel Keenlyside, leader of the BCPU, commented “This is a major breakthrough for climate research and for the development of climate services in our region. Now we have solid evidence that we can provide to our stakeholders, like BKK and Agder Energi, that we can really say something useful about how the coming winters will be. It will also lead to improved models for providing better long-term projections of climate change.

The newly established Centre for Research-Based Innovation (SFI) called Climate Futures led by NORCE, with the Bjerknes Centre and Nansen Center as partners, among others, will benefit from this work in the future. The Centre’s objective is to improve climate prediction on short time scales of days to decades, and to improve the management of climate risks. By improving the predictability of Norwegian winters on a decadal scale, as indicated by this recent study, decadal climate prediction will become better and better. Erik Kolstad with NORCE and Bjerknes Centre leads this project:

“These results show that the models now can predict the climate in a useful way for planning in a number of sectors, like renewable energy, agriculture, and finance/insurance. With predictions like these both the business world and the public sector will be better prepared for extreme weather events and potentially gain more from periods of favorable weather and climate.”

Tarjei Breiteig (Head of Hydroglogy and Meterology at Agder Energi AS) represents one of the stakeholders this study directly impacts.

“This study shows that there is stilled untapped potential in saying something about possible weather and climate the next decade. To save hydropower in years of little demand, and have stored hydropower in years where demand will be high, it is essential for us to have sufficient information on what fluctuations to be expected in weather and climate the next decade. The climate research groups in Bergen show that they take this effort seriously, and that they are ahead when it comes to analyse and use climate models in the real world.”

Atlantic Multidecadal Variability (AMV) in the Norwegian Earth System model

Vågane, Julie Solsvik (2020-06-26). Atlantic Multidecadal Variability (AMV) in the Norwegian Earth System model (Master’s thesis, University of Bergen, Bergen, Norway). http://bora.uib.no/handle/1956/22970 .

Summary: The causes of low-frequency sea surface temperature (SST) variations in the Atlantic, known as Atlantic Multidecadal Variability (AMV), are debated. AMV has climatic impacts on for instance hurricane activity and Sahel rainfall, and understanding AMV can improve decadal predictions. While some discuss whether AMV arises due to external forcing, the ocean dynamics or the thermodynamic atmosphere-ocean interaction, others question the very existence of AMV. In this thesis, I look at the Norwegian Earth System Model (NorESM), investigating low-frequency variability and possible drivers for AMV in the North Atlantic. I compute a heat budget and a multiple linear regression (MLR) model, and investigate the influence of the dynamics and thermodynamics on AMV on different time scales and regions. I use the North Atlantic Oscillation (NAO) and the Atlantic Meridional Overturning circulation (AMOC) to characterize the large-scale impacts associated with ocean and atmospheric circulation patterns. The MLR model with NAO and AMOC, manages to explain 20.5 % of the temperature tendency on an interannual time scale, and 34.8 % on a decadal time scale in the subpolar gyre (SPG). In the tropics, the variance explained is smaller, only explaining 6.5 % interannually and 9.6 % decadally. Through a comparison with observations, I found that the AMOC amplitude is underestimated and the SST is off by over 1C. This may influence the performance of the MLR model. Finally, I present some ideas for improving the MLR model and the possibility for decadal predictions.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Amplification of synoptic to annual variability of West African summer monsoon rainfall under global warming

Akinsanola, A. A., W. Zhou, T. Zhou, N. Keenlyside, 2020: Amplification of synoptic to annual variability of West African summer monsoon rainfall under global warming. npj Clim Atmos Sci. https://doi.org/10.1038/s41612-020-0125-1 .

Summary: Increased knowledge of future changes in rainfall variability is needed to reduce vulnerability to potential impacts of global warming, especially in highly vulnerable regions like West Africa. While changes in mean and extreme rainfall have been studied extensively, rainfall variability has received less attention, despite its importance. In this study, future changes in West African summer monsoon (WASM) rainfall variability were investigated using data from two regional climate models that participated in the Coordinated Regional Climate Downscaling Experiment (CORDEX). The daily rainfall data were band-pass filtered to isolate variability at a wide range of timescales. Under global warming, WASM rainfall variability is projected to increase by about 10–28% over the entire region and is remarkably robust over a wide range of timescales. We found that changes in mean rainfall significantly explain the majority of intermodel spread in projected WASM rainfall variability. The role of increased atmospheric moisture is examined by estimating the change due to an idealized local thermodynamic enhancement. Analysis reveals that increased atmospheric moisture with respect to warming following the Clausius–Clapeyron relationship can explain the majority of the projected changes in rainfall variability at all timescales.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Evaluating Impacts of Recent Arctic Sea Ice Loss on the Northern Hemisphere Winter Climate Change

Ogawa, F., N. Keenlyside, Y. Gao, T. Koenigk, S. Yang, L. Suo, T. Wang, G. Gastineau, T. Nakamura, N. Cheung Ho, N. E. Omrani, J. Ukita, and V. Semenov, 2018: Evaluating Impacts of Recent Arctic Sea Ice Loss on the Northern Hemisphere Winter Climate Change. Geophysical Research Letters, 45, 3255-3263.

DOI: https://doi.org/10.1002/2017GL076502

Read more

Flow-dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian Climate Prediction Model

Counillon, F., N. Keenlyside, I. Bethke, Y. Wang, S. Billeau, M. L. Shen, and M. Bentsen, 2016: Flow-dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian Climate Prediction Model. Tellus A, 68,

DOI: https://doi.org/10.3402/tellusa.v68.32437

Read more