Tag: counillon

Framework for an Ocean-Connected Supermodel of the Earth System

Counillon, F., Keenlyside, N., Wang, S., Devilliers, M., Gupta, A., Koseki, S., Shen, M.-L. 2023: Framework for an Ocean-Connected Supermodel of the Earth System. JAMES. https://doi.org/10.1029/2022MS003310

Summary: Observed and future winter Arctic sea ice loss is strongest in the Barents Sea. However, the anthropogenic signal of the sea ice decline is superimposed by pronounced internal variability that represents a large source of uncertainty in future climate projections. A notable manifestation of internal variability is rapid ice change events (RICEs) that greatly exceed the anthropogenic trend. These RICEs are associated with large displacements of the sea ice edge which could potentially have both local and remote impacts on the climate system. In this study we present the first investigation of the frequency and drivers of RICEs in the future Barents Sea, using multi-member ensemble simulations from CMIP5 and CMIP6. A majority of RICEs are triggered by trends in ocean heat transport or surface heat fluxes. Ice loss events are associated with increasing trends in ocean heat transport and decreasing trends in surface heat loss. RICEs are a common feature of the future Barents Sea until the region becomes close to ice-free. As their evolution over time is closely tied to the average sea ice conditions, rapid ice changes in the Barents Sea may serve as a precursor for future changes in adjacent seas.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Super-resolution data assimilation

Barthélémy, S., Brajard, J., Bertino, L., Counillon, F. 2022: Super-resolution data assimilation. Ocean Dyn. https://doi.org/10.1007/s10236-022-01523-x

Summary: Increasing model resolution can improve the performance of a data assimilation system because it reduces model error, the system can more optimally use high-resolution observations, and with an ensemble data assimilation method the forecast error covariances are improved. However, increasing the resolution scales with a cubical increase of the computational costs. A method that can more effectively improve performance is introduced here. The novel approach called “Super-resolution data assimilation” (SRDA) is inspired from super-resolution image processing techniques and brought to the data assimilation context. Starting from a low-resolution forecast, a neural network (NN) emulates the fields to high-resolution, assimilates high-resolution observations, and scales it back up to the original resolution for running the next model step. The SRDA is tested with a quasi-geostrophic model in an idealized twin experiment for configurations where the model resolution is twice and four times lower than the reference solution from which pseudo-observations are extracted. The assimilation is performed with an Ensemble Kalman Filter. We show that SRDA outperforms both the low-resolution data assimilation approach and a version of SRDA with cubic spline interpolation instead of NN. The NN’s ability to anticipate the systematic differences between low- and high-resolution model dynamics explains the enhanced performance, in particular by correcting the difference of propagation speed of eddies. With a 25-member ensemble at low resolution, the SRDA computational overhead is 55 percent and the errors reduce by 40 percent, making the performance very close to that of the high-resolution system (52 percent of error reduction) that increases the cost by 800 percent. The reliability of the ensemble system is not degraded by SRDA.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

WMO Global Annual to Decadal Climate Update: A Prediction for 2021–25

Hermanson, L., Smith, D., Seabrook, M., Bilbao, R., Doblas-Reyes, F., Tourigny, E., Lapin, V., Kharin, V.V., Merryfield, W.J., Sospedra-Alfonso, R., Athanasiadis, P., Nicoli, D., Gualdi, S., Dunstone, N., Eade, R., Scaife, A., Collier, M., O’Kane, T., Kitsios, V., Sandery, P., Pankatz, K., Früh, B., Pohlmann, H., Müller, W., Kataoka, T., Tatebe, H., Ishii M., Imada, Y., Kruschke, T., Koenigk, T., Pasha Karami, M., Yang, S., Tian, T., Zhang, L., Delworth, T., Yang, X., Zeng, F., Wang, Y., Counillon, F., Keenlyside, N.S., Bethke, I., Lean, J., Luterbacher, J., Kumar Kolli, R., Kumar, A. 2022: WMO Global Annual to Decadal Climate Update: A Prediction for 2021–25. BAMS https://doi.org/10.1175/BAMS-D-20-0311.1 .

Summary: As climate change accelerates, societies and climate-sensitive socioeconomic sectors cannot continue to rely on the past as a guide to possible future climate hazards. Operational decadal predictions offer the potential to inform current adaptation and increase resilience by filling the important gap between seasonal forecasts and climate projections. The World Meteorological Organization (WMO) has recognized this and in 2017 established the WMO Lead Centre for Annual to Decadal Climate Predictions (shortened to “Lead Centre” below), which annually provides a large multimodel ensemble of predictions covering the next 5 years. This international collaboration produces a prediction that is more skillful and useful than any single center can achieve. One of the main outputs of the Lead Centre is the Global Annual to Decadal Climate Update (GADCU), a consensus forecast based on these predictions. This update includes maps showing key variables, discussion on forecast skill, and predictions of climate indices such as the global mean near-surface temperature and Atlantic multidecadal variability. it also estimates the probability of the global mean temperature exceeding 1.5°C above preindustrial levels for at least 1 year in the next 5 years, which helps policy-makers understand how closely the world is approaching this goal of the Paris Agreement. This paper, written by the authors of the GADCU, introduces the GADCU, presents its key outputs, and briefly discusses its role in providing vital climate information for society now and in the future..

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway

Langehaug, H. R., Ortega, P., Counillon, F., Matei, D., Maroon, E., Keenlyside, N., Mignot, J., Wang, Y., Swingedouw, D., Bethke, I., Yang, S., Danabasoglu, G., Bellucci, A., Ruggieri, P., Nicolì, D., Årthun, M. 2022: Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway. J Clim. https://doi.org/10.1007/s10236-022-01523-x

Summary: In this study, we find that dynamical prediction systems and their respective climate models struggle to realistically represent ocean surface temperature variability in the eastern subpolar North Atlantic and Nordic seas on interannual-to-decadal time scales. In previous studies, ocean advection is proposed as a key mechanism in propagating temperature anomalies along the Atlantic water pathway toward the Arctic Ocean. Our analysis suggests that the predicted temperature anomalies are not properly circulated to the north; this is a result of model errors that seems to be exacerbated by the effect of initialization shocks and forecast drift. Better climate predictions in the study region will thus require improving the initialization step, as well as enhancing process representation in the climate models.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Estimation of Ocean Biogeochemical Parameters in an Earth System Model Using the Dual One Step Ahead Smoother: A Twin Experiment

Singh, T., Counillon, F., Tjiputra, J., Wang Y., El Gharamti, M. 2022: Estimation of Ocean Biogeochemical Parameters in an Earth System Model Using the Dual One Step Ahead Smoother: A Twin Experiment. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.775394 .

For an easy-to-understand overview of this publication, produced in collaboration with the TRIATLAS project, we recommend starting with this neat article written by Henrike Wilborn, at NERSC: “Making climate models more accurate by improving their tuning.

Summary: Ocean biogeochemical (BGC) models utilise a large number of poorly-constrained global parameters to mimic unresolved processes and reproduce the observed complex spatio-temporal patterns. Large model errors stem primarily from inaccuracies in these parameters whose optimal values can vary both in space and time. This study aims to demonstrate the ability of ensemble data assimilation (DA) methods to provide high-quality and improved BGC parameters within an Earth system model in an idealized perfect twin experiment framework. We use the Norwegian Climate Prediction Model (NorCPM), which combines the Norwegian Earth System Model with the Dual-One-Step ahead smoothing-based Ensemble Kalman Filter (DOSA-EnKF). We aim to estimate five spatially varying BGC parameters by assimilating salinity and temperature profiles and surface BGC (Phytoplankton, Nitrate, Phosphate, Silicate, and Oxygen) observations in a strongly coupled DA framework—i.e., jointly updating ocean and BGC state-parameters during the assimilation. We show how BGC observations can effectively constrain error in the ocean physics and vice versa. The method converges quickly (less than a year) and largely reduces the errors in the BGC parameters. Some parameter error remains, but the resulting state variable error using the estimated parameters for a free ensemble run and for a reanalysis performs nearly as well as with true parameter values. Optimal parameter values can also be recovered by assimilating climatological BGC observations or sparse observational networks. The findings of this study demonstrate the applicability of the DA approach for tuning the system in a real framework.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

NorCPM1 and its contribution to CMIP6 DCPP

Bethke, I., Wang, Y., Counillon, F., Keenlyside, N., Kimmritz, M., Fransner, F., Samuelsen, A., Langehaug, H., Svendsen, L., Chiu, P.-G., Passos, L., Bentsen, M., Guo, C., Gupta, A., Tjiputra, J., Kirkevåg, A., Olivié, D., Seland, Ø., Solsvik Vågane, J., Fan, Y., Eldevik, T. 2021: NorCPM1 and its contribution to CMIP6 DCPP. Geosci Model Dev. https://doi.org/10.5194/gmd-14-7073-2021 .

For an easy-to-understand overview, we recommend starting with this neat article written by the Climate Futures team, a project connected to BCPU: “New Study: Decadal Climate Forecasts From The Norwegian Climate Prediction Model” (les heller på norsk).

Summary: The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It combines the Norwegian Earth System Model version 1 (NorESM1) – which features interactive aerosol–cloud schemes and an isopycnic-coordinate ocean component with biogeochemistry – with anomaly assimilation of sea surface temperature (SST) and -profile observations using the ensemble Kalman filter (EnKF).

We describe the Earth system component and the data assimilation (DA) scheme, highlighting implementation of new forcings, bug fixes, retuning and DA innovations. Notably, NorCPM1 uses two anomaly assimilation variants to assess the impact of sea ice initialization and climatological reference period: the first (i1) uses a 1980–2010 reference climatology for computing anomalies and the DA only updates the physical ocean state; the second (i2) uses a 1950–2010 reference climatology and additionally updates the sea ice state via strongly coupled DA of ocean observations.

We assess the baseline, reanalysis and prediction performance with output contributed to the Decadal Climate Prediction Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6). The NorESM1 simulations exhibit a moderate historical global surface temperature evolution and tropical climate variability characteristics that compare favourably with observations. The climate biases of NorESM1 using CMIP6 external forcings are comparable to, or slightly larger than those of, the original NorESM1 CMIP5 model, with positive biases in Atlantic meridional overturning circulation (AMOC) strength and Arctic sea ice thickness, too-cold subtropical oceans and northern continents, and a too-warm North Atlantic and Southern Ocean. The biases in the assimilation experiments are mostly unchanged, except for a reduced sea ice thickness bias in i2 caused by the assimilation update of sea ice, generally confirming that the anomaly assimilation synchronizes variability without changing the climatology. The i1 and i2 reanalysis/hindcast products overall show comparable performance. The benefits of DA-assisted initialization are seen globally in the first year of the prediction over a range of variables, also in the atmosphere and over land. External forcings are the primary source of multiyear skills, while added benefit from initialization is demonstrated for the subpolar North Atlantic (SPNA) and its extension to the Arctic, and also for temperature over land if the forced signal is removed. Both products show limited success in constraining and predicting unforced surface ocean biogeochemistry variability. However, observational uncertainties and short temporal coverage make biogeochemistry evaluation uncertain, and potential predictability is found to be high. For physical climate prediction, i2 performs marginally better than i1 for a range of variables, especially in the SPNA and in the vicinity of sea ice, with notably improved sea level variability of the Southern Ocean. Despite similar skills, i1 and i2 feature very different drift behaviours, mainly due to their use of different climatologies in DA; i2 exhibits an anomalously strong AMOC that leads to forecast drift with unrealistic warming in the SPNA, whereas i1 exhibits a weaker AMOC that leads to unrealistic cooling. In polar regions, the reduction in climatological ice thickness in i2 causes additional forecast drift as the ice grows back. Posteriori lead-dependent drift correction removes most hindcast differences; applications should therefore benefit from combining the two products.

The results confirm that the large-scale ocean circulation exerts strong control on North Atlantic temperature variability, implying predictive potential from better synchronization of circulation variability. Future development will therefore focus on improving the representation of mean state and variability of AMOC and its initialization, in addition to upgrades of the atmospheric component. Other efforts will be directed to refining the anomaly assimilation scheme – to better separate internal and forced signals, to include land and atmosphere initialization and new observational types – and improving biogeochemistry prediction capability. Combined with other systems, NorCPM1 may already contribute to skilful multiyear climate prediction that benefits society.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Twenty-one years of phytoplankton bloom phenology in the Barents, Norwegian and North seas

Silva, E.F.F., Counillon, F., Brajard, J., Korosov, A., Pettersson, L., Samuelsen, A., Keenlyside, N. 2021: Twenty-one years of phytoplankton bloom phenology in the Barents, Norwegian and North seas. Front Mar Sci.  https://doi.org/10.3389/fmars.2021.746327 .

For en flott oppsummering på norsk, les denne artikkelen av vår samarbeidspartner, Climate Futures.

Summary: Phytoplankton blooms provide biomass to the marine trophic web, contribute to the carbon removal from the atmosphere and can be deadly when associated with harmful species. This points to the need to understand the phenology of the blooms in the Barents, Norwegian, and North seas. We use satellite chlorophyll-a from 2000 to 2020 to assess robust climatological and the interannual trends of spring and summer blooms onset, peak day, duration and intensity. Further, we also correlate the interannual variability of the blooms with mixed layer depth (MLD), sea surface temperature (SST), wind speed and suspended particulate matter (SPM) retrieved from models and remote sensing. The climatological spring blooms start on March 10th and end on June 19th. The climatological summer blooms begin on July 13th and end on September 17th. In the Barents Sea, years of shallower mixed layer (ML) driven by both calm waters and higher freshwaters input keeps the phytoplankton in the euphotic zone, causing the spring bloom to start earlier and reach higher biomass but end sooner due to the lack of nutrients upwelling from the deep. In the Norwegian Sea, a correlation between SST and the spring blooms is found. Here, warmer waters are correlated to earlier and stronger blooms in most regions but with later and weaker blooms in the eastern Norwegian Sea. In the North Sea, years of shallower ML reduces the phytoplankton sinking below the euphotic zone and limits the SPM increase from the bed shear stress, creating an ideal environment of stratified and clear waters to develop stronger spring blooms. Last, the summer blooms onset, peak day and duration have been rapidly delaying at a rate of 1.25-day year–1, but with inconclusive causes based on the parameters assessed in this study.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Relating model bias and prediction skill in the equatorial Atlantic

Counillon, F., Keenlyside, N., Toniazzo, T., Koseki, K., Demissie, T., Bethke, I., Wang, Y. 2021: Relating model bias and prediction skill in the equatorial Atlantic. Climate Dynamics. https://doi.org/10.1007/s00382-020-05605-8

For a nice overview of the article, check out this news piece by our partner NERSC, also involved in our collaborative projects TRIATLAS and STERCP.

Summary: We investigate the impact of large climatological biases in the tropical Atlantic on reanalysis and seasonal prediction performance using the Norwegian Climate Prediction Model (NorCPM) in a standard and an anomaly coupled configuration. Anomaly coupling corrects the climatological surface wind and sea surface temperature (SST) fields exchanged between oceanic and atmospheric models, and thereby significantly reduces the climatological model biases of precipitation and SST. NorCPM combines the Norwegian Earth system model with the ensemble Kalman filter and assimilates SST and hydrographic profiles. We perform a reanalysis for the period 1980–2010 and a set of seasonal predictions for the period 1985–2010 with both model configurations. Anomaly coupling improves the accuracy and the reliability of the reanalysis in the tropical Atlantic, because the corrected model enables a dynamical reconstruction that satisfies better the observations and their uncertainty. Anomaly coupling also enhances seasonal prediction skill in the equatorial Atlantic to the level of the best models of the North American multi-model ensemble, while the standard model is among the worst. However, anomaly coupling slightly damps the amplitude of Atlantic Niño and Niña events. The skill enhancements achieved by anomaly coupling are largest for forecast started from August and February. There is strong spring predictability barrier, with little skill in predicting conditions in June. The anomaly coupled system show some skill in predicting the secondary Atlantic Niño-II SST variability that peaks in November–December from August 1st.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

North Atlantic climate far more predictable than models imply

Smith, D.M., Scaife, A.A., Eade, R. et al. 2020: North Atlantic climate far more predictable than models imply. Nature. https://doi.org/10.1038/s41586-020-2525-0 .

Summary: Quantifying signals and uncertainties in climate models is essential for the detection, attribution, prediction and projection of climate change1,2,3. Although inter-model agreement is high for large-scale temperature signals, dynamical changes in atmospheric circulation are very uncertain4. This leads to low confidence in regional projections, especially for precipitation, over the coming decades5,6. The chaotic nature of the climate system7,8,9 may also mean that signal uncertainties are largely irreducible. However, climate projections are difficult to verify until further observations become available. Here we assess retrospective climate model predictions of the past six decades and show that decadal variations in North Atlantic winter climate are highly predictable, despite a lack of agreement between individual model simulations and the poor predictive ability of raw model outputs. Crucially, current models underestimate the predictable signal (the predictable fraction of the total variability) of the North Atlantic Oscillation (the leading mode of variability in North Atlantic atmospheric circulation) by an order of magnitude. Consequently, compared to perfect models, 100 times as many ensemble members are needed in current models to extract this signal, and its effects on the climate are underestimated relative to other factors. To address these limitations, we implement a two-stage post-processing technique. We first adjust the variance of the ensemble-mean North Atlantic Oscillation forecast to match the observed variance of the predictable signal. We then select and use only the ensemble members with a North Atlantic Oscillation sufficiently close to the variance-adjusted ensemble-mean forecast North Atlantic Oscillation. This approach greatly improves decadal predictions of winter climate for Europe and eastern North America. Predictions of Atlantic multidecadal variability are also improved, suggesting that the North Atlantic Oscillation is not driven solely by Atlantic multidecadal variability. Our results highlight the need to understand why the signal-to-noise ratio is too small in current climate models10, and the extent to which correcting this model error would reduce uncertainties in regional climate change projections on timescales beyond a decade.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Scientific breakthrough: Winter climate in Norway now more predictable

Scientists from the Bjerknes Climate Prediction Unit, affiliated with the Nansen Environmental and Remote Sensing Center, the Bjerknes Centre for Climate Research, and the University of Bergen, contributed to a recent publication in Nature. The results indicate that it is possible to predict how the atmospheric circulation above the North Atlantic will evolve during the next decade. This is crucial for better predicting the winters in Europe and Eastern North America.

Figure 1: Rainfall variation over Northern Europe between 1960 and 2005. e) shows observations (black) and modelled predictions (red) with uncertainty range (shaded red) without adjustments, f) shows the improved and adjusted modelled predictions and uncertainty range.
Figure 1: Rainfall variation over Northern Europe between 1960 and 2005. e) shows observations (black) and modelled predictions (red) with uncertainty range (shaded red) without adjustments, f) shows the improved and adjusted modelled predictions and uncertainty range.

Investigating the climate of the past

In order to look forward in time, looking at the past is helpful. This is true in many cases, and the researchers behind this study led by the UK Met Office made use of this principle. They used climate models for investigating how accurately climate can be predicted on a decadal scale over the past sixty years.

Sea level pressure above the North Atlantic influences Norwegian winters

The main pattern of changes in sea level pressure above the North Atlantic, called the North Atlantic Oscillation (NAO), influences the wind and storms over the North Atlantic, which in turn influences the winter weather in Europe and Eastern North America. Two extremes are possible for winters in these regions: stormy, warm, and wet, or calm, cold, and dry. Which extreme the winter weather will tend towards is now shown to be very predictable on a decadal scale, according to the new study.

The researchers investigated the North Atlantic Oscillation and its influence by producing retrospective forecasts of the past climate (called hindcasts) and comparing them to observations made in the past. That way they quantified how accurate the model predictions are.

One of the most important predictions for Europe and especially Norway is the amount of rainfall. The comparison between hindcasts produced by models (Figure f, red line) and the observation (Figure f, black line) shows that the rainfall over Northern Europe can be predicted with high certainty. The model results match the previous observations nicely.

Contribution from the Bjerknes Climate Prediction Unit

Many hindcasts were produced by different research groups worldwide. The different climate models from these groups are part of t experiments performed for the last and upcoming Intergovernmental Panel on Climate Change (IPCC) reports. Bergen researchers involved in the study are the following: Noel Keenlyside (UiB/NERSC), François Counillon (NERSC), Ingo Bethke (UiB), and Yiguo Wang (NERSC). The four are part of the Bjerknes Climate Prediction Unit at the Bjerknes Centre for Climate Research. They used their climate model, the Norwegian Climate Prediction Model (NorCPM), which is part of CMIP6, to contribute to this study.

Climate models need to be improved

Apart from the high predictability of the North Atlantic climate indicated by the hindcasts, the study also shows that current climate models are underestimating this exact fact (Figure e). The researchers identified this deficiency and show that climate models need to be and can be adjusted (Figure f) to better predict the behaviour of the pressure above the North Atlantic and in turn the future winter conditions in Europe and Eastern North America.

To sum it up, confidently predicting the winters of the next years for Norway is now a reality, but climate models need to be improved.

Significance of this study: Climate can now be better predicted on short time scales

Noel Keenlyside, leader of the BCPU, commented “This is a major breakthrough for climate research and for the development of climate services in our region. Now we have solid evidence that we can provide to our stakeholders, like BKK and Agder Energi, that we can really say something useful about how the coming winters will be. It will also lead to improved models for providing better long-term projections of climate change.

The newly established Centre for Research-Based Innovation (SFI) called Climate Futures led by NORCE, with the Bjerknes Centre and Nansen Center as partners, among others, will benefit from this work in the future. The Centre’s objective is to improve climate prediction on short time scales of days to decades, and to improve the management of climate risks. By improving the predictability of Norwegian winters on a decadal scale, as indicated by this recent study, decadal climate prediction will become better and better. Erik Kolstad with NORCE and Bjerknes Centre leads this project:

“These results show that the models now can predict the climate in a useful way for planning in a number of sectors, like renewable energy, agriculture, and finance/insurance. With predictions like these both the business world and the public sector will be better prepared for extreme weather events and potentially gain more from periods of favorable weather and climate.”

Tarjei Breiteig (Head of Hydroglogy and Meterology at Agder Energi AS) represents one of the stakeholders this study directly impacts.

“This study shows that there is stilled untapped potential in saying something about possible weather and climate the next decade. To save hydropower in years of little demand, and have stored hydropower in years where demand will be high, it is essential for us to have sufficient information on what fluctuations to be expected in weather and climate the next decade. The climate research groups in Bergen show that they take this effort seriously, and that they are ahead when it comes to analyse and use climate models in the real world.”