Category: Publications

Future strengthening of the Nordic Seas overturning circulation

Årthun, M., Asbjørnsen, H., Chafik, L., Johnson, H.L., Våge, K. 2023: Future strengthening of the Nordic Seas overturning circulation. Nat Commun. https://www.nature.com/articles/s41467-023-37846-6

Summary: The overturning circulation in the Nordic Seas involves the transformation of warm Atlantic waters into cold, dense overflows. These overflow waters return to the North Atlantic and form the headwaters to the deep limb of the Atlantic meridional overturning circulation (AMOC). The Nordic Seas are thus a key component of the AMOC. However, little is known about the response of the overturning circulation in the Nordic Seas to future climate change. Here we show using global climate models that, in contrast to the North Atlantic, the simulated density-space overturning circulation in the Nordic Seas increases throughout most of the 21st century as a result of enhanced horizontal circulation and a strengthened zonal density gradient. The increased Nordic Seas overturning is furthermore manifested in the overturning circulation in the eastern subpolar North Atlantic. A strengthened Nordic Seas overturning circulation could therefore be a stabilizing factor in the future AMOC.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Rapid sea ice changes in the future Barents Sea

Rieke, O., Årthun, M., Dörr, J.S. 2023: Rapid sea ice changes in the future Barents Sea. The Cryosphere. https://doi.org/10.5194/tc-17-1445-2023

Summary: Observed and future winter Arctic sea ice loss is strongest in the Barents Sea. However, the anthropogenic signal of the sea ice decline is superimposed by pronounced internal variability that represents a large source of uncertainty in future climate projections. A notable manifestation of internal variability is rapid ice change events (RICEs) that greatly exceed the anthropogenic trend. These RICEs are associated with large displacements of the sea ice edge which could potentially have both local and remote impacts on the climate system. In this study we present the first investigation of the frequency and drivers of RICEs in the future Barents Sea, using multi-member ensemble simulations from CMIP5 and CMIP6. A majority of RICEs are triggered by trends in ocean heat transport or surface heat fluxes. Ice loss events are associated with increasing trends in ocean heat transport and decreasing trends in surface heat loss. RICEs are a common feature of the future Barents Sea until the region becomes close to ice-free. As their evolution over time is closely tied to the average sea ice conditions, rapid ice changes in the Barents Sea may serve as a precursor for future changes in adjacent seas.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Framework for an Ocean-Connected Supermodel of the Earth System

Counillon, F., Keenlyside, N., Wang, S., Devilliers, M., Gupta, A., Koseki, S., Shen, M.-L. 2023: Framework for an Ocean-Connected Supermodel of the Earth System. JAMES. https://doi.org/10.1029/2022MS003310

Summary: Observed and future winter Arctic sea ice loss is strongest in the Barents Sea. However, the anthropogenic signal of the sea ice decline is superimposed by pronounced internal variability that represents a large source of uncertainty in future climate projections. A notable manifestation of internal variability is rapid ice change events (RICEs) that greatly exceed the anthropogenic trend. These RICEs are associated with large displacements of the sea ice edge which could potentially have both local and remote impacts on the climate system. In this study we present the first investigation of the frequency and drivers of RICEs in the future Barents Sea, using multi-member ensemble simulations from CMIP5 and CMIP6. A majority of RICEs are triggered by trends in ocean heat transport or surface heat fluxes. Ice loss events are associated with increasing trends in ocean heat transport and decreasing trends in surface heat loss. RICEs are a common feature of the future Barents Sea until the region becomes close to ice-free. As their evolution over time is closely tied to the average sea ice conditions, rapid ice changes in the Barents Sea may serve as a precursor for future changes in adjacent seas.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Latitudinally distinct stocks of Atlantic cod face fundamentally different biophysical challenges under on-going climate change

Kjesbu, O.S., Alix, M., Sandø, A.B., Strand, E., Wright, P.J., Johns, D.G., Thorsen, A., Marshall, C.T., Bakkeplass, K.G., Vikebø, F.B., Myksvoll, M.S., Ottersen, G., Allan, B.J.M., Fossheim, M., Stiansen, J.E., Huse, G., Sundby, S. 2023: Latitudinally distinct stocks of Atlantic cod face fundamentally different biophysical challenges under on-going climate change. Fish and Fisheries. https://doi.org/10.1111/faf.12728

Summary: Observed and future winter Arctic sea ice loss is strongest in the Barents Sea. However, the anthropogenic signal of the sea ice decline is superimposed by pronounced internal variability that represents a large source of uncertainty in future climate projections. A notable manifestation of internal variability is rapid ice change events (RICEs) that greatly exceed the anthropogenic trend. These RICEs are associated with large displacements of the sea ice edge which could potentially have both local and remote impacts on the climate system. In this study we present the first investigation of the frequency and drivers of RICEs in the future Barents Sea, using multi-member ensemble simulations from CMIP5 and CMIP6. A majority of RICEs are triggered by trends in ocean heat transport or surface heat fluxes. Ice loss events are associated with increasing trends in ocean heat transport and decreasing trends in surface heat loss. RICEs are a common feature of the future Barents Sea until the region becomes close to ice-free. As their evolution over time is closely tied to the average sea ice conditions, rapid ice changes in the Barents Sea may serve as a precursor for future changes in adjacent seas.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Multidisciplinary perspectives on living marine resources in the Arctic

Kvamsdal, S.F., Dankel, D., Ekerhovd, N.-A., Hoel, A.H., Renner, A., Sandø, A.B., Steinshamn, S.I. 2022: Multidisciplinary perspectives on living marine resources in the Arctic. Polar Research. https://doi.org/10.33265/polar.v41.7766

Summary: Many areas in the Arctic are vulnerable to the impacts of climate change. We observe large-scale effects on physical, biological, economic and social parameters, including ice cover, species distributions, economic activity and regional governance frameworks. Arctic living marine resources are affected in various ways. A holistic understanding of these effects requires a multidisciplinary enterprise. We synthesize relevant research, from oceanography and ecology, via economics, to political science and international law. We find that multidisciplinary research can enhance our understanding and promote new questions and issues relating to impacts and outcomes of climate change in the Arctic. Such issues include recent insights on changing spawning migrations of the North-east Arctic cod stock that necessitates revisions of socioeconomic estimates of ecosystem wealth in the Barents Sea, better integrated prediction systems that require increased cooperation between experts on climate prediction and ecosystem modelling, and institutional complexities of Arctic governance that require enhanced coordination.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Weakening of the Atlantic Niño variability under global warming

Crespo, L.R., Prigent, A., Keenlyside, N., Koseki, S., Svendsen, L., Richter, I., Sánchez-Gómez, E. 2022: Weakening of the Atlantic Niño variability under global warming. Nat. Clim. Chang. https://doi.org/10.1038/s41558-022-01453-y

Summary: The Atlantic Niño is one of the most important patterns of interannual tropical climate variability, but how climate change will influence this pattern is not well known due to large climate model biases. Here we show that state-of-the-art climate models robustly predict a weakening of Atlantic Niños in response to global warming, mainly due to a decoupling of subsurface and surface temperature variations as the upper equatorial Atlantic Ocean warms. This weakening is predicted by most (>80%) models in the Coupled Model Intercomparison Project Phases 5 and 6 under the highest emission scenarios. Our results indicate a reduction in variability by the end of the century by 14%, and as much as 24–48% when accounting for model errors using a simple emergent constraint analysis. Such a weakening of Atlantic Niño variability will potentially impact climate conditions and the skill of seasonal predictions in many regions.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Super-resolution data assimilation

Barthélémy, S., Brajard, J., Bertino, L., Counillon, F. 2022: Super-resolution data assimilation. Ocean Dyn. https://doi.org/10.1007/s10236-022-01523-x

Summary: Increasing model resolution can improve the performance of a data assimilation system because it reduces model error, the system can more optimally use high-resolution observations, and with an ensemble data assimilation method the forecast error covariances are improved. However, increasing the resolution scales with a cubical increase of the computational costs. A method that can more effectively improve performance is introduced here. The novel approach called “Super-resolution data assimilation” (SRDA) is inspired from super-resolution image processing techniques and brought to the data assimilation context. Starting from a low-resolution forecast, a neural network (NN) emulates the fields to high-resolution, assimilates high-resolution observations, and scales it back up to the original resolution for running the next model step. The SRDA is tested with a quasi-geostrophic model in an idealized twin experiment for configurations where the model resolution is twice and four times lower than the reference solution from which pseudo-observations are extracted. The assimilation is performed with an Ensemble Kalman Filter. We show that SRDA outperforms both the low-resolution data assimilation approach and a version of SRDA with cubic spline interpolation instead of NN. The NN’s ability to anticipate the systematic differences between low- and high-resolution model dynamics explains the enhanced performance, in particular by correcting the difference of propagation speed of eddies. With a 25-member ensemble at low resolution, the SRDA computational overhead is 55 percent and the errors reduce by 40 percent, making the performance very close to that of the high-resolution system (52 percent of error reduction) that increases the cost by 800 percent. The reliability of the ensemble system is not degraded by SRDA.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Impact of initialization methods on the predictive skill in NorCPM: an Arctic–Atlantic case study

Passos, L., Langehaug, HR., Årthun, M., Eldevik, T., Bethke, I., Kimmritz, M. 2022: Impact of initialization methods on the predictive skill in NorCPM: an Arctic–Atlantic case study. Clim Dyn. https://doi.org/10.1007/s00382-022-06437-4

Summary: The skilful prediction of climatic conditions on a forecast horizon of months to decades into the future remains a main scientific challenge of large societal benefit. Here we assess the hindcast skill of the Norwegian Climate Prediction Model (NorCPM) for sea surface temperature (SST) and sea surface salinity (SSS) in the Arctic–Atlantic region focusing on the impact of different initialization methods. We find the skill to be distinctly larger for the Subpolar North Atlantic than for the Norwegian Sea, and generally for all lead years analyzed. For the Subpolar North Atlantic, there is furthermore consistent benefit in increasing the amount of data assimilated, and also in updating the sea ice based on SST with strongly coupled data assimilation. The predictive skill is furthermore significant for at least two model versions up to 8–10 lead years with the exception for SSS at the longer lead years. For the Norwegian Sea, significant predictive skill is more rare; there is relatively higher skill with respect to SSS than for SST. A systematic benefit from more complex data assimilation approach can not be identified for this region. Somewhat surprisingly, skill deteriorates quite consistently for both the Subpolar North Atlantic and the Norwegian Sea when going from CMIP5 to corresponding CMIP6 versions. We find this to relate to change in the regional performance of the underlying physical model that dominates the benefit from initialization.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Mitigating climate biases in the mid-latitude North Atlantic by increasing model resolution: SST gradients and their relation to blocking and the jet

Athanasiadis, P.J., Ogawa, F., Omrani, N.-E., Keenlyside, N., Schiemann, R., Baker, A.J., Vidale, P.L., Bellucci, A., Ruggieri, P., Haarsma, R., Roberts, M., Roberts, C., Novak, L., Gualdi, S. 2022: Mitigating climate biases in the mid-latitude North Atlantic by increasing model resolution: SST gradients and their relation to blocking and the jet. J Clim. https://doi.org/10.1007/s10236-022-01523-x

Summary: Starting to resolve the oceanic mesoscale in climate models is a step change in model fidelity. This study examines how certain obstinate biases in the midlatitude North Atlantic respond to increasing resolution (from 1° to 0.25° in the ocean) and how such biases in sea surface temperature (SST) affect the atmosphere. Using a multi-model ensemble of historical climate simulations run at different horizontal resolutions, it is shown that a severe cold SST bias in the central North Atlantic, common to many ocean models, is significantly reduced with increasing resolution. The associated bias in the time-mean meridional SST gradient is shown to relate to a positive bias in low-level baroclinicity, while the cold SST bias causes biases also in static stability and diabatic heating in the interior of the atmosphere. The changes in baroclinicity and diabatic heating brought by increasing resolution lead to improvements in European blocking and eddy-driven jet variability. Across the multi-model ensemble a clear relationship is found between the climatological meridional SST gradients in the broader Gulf Stream Extension area and two aspects of the atmospheric circulation: the frequency of high-latitude blocking and the southern-jet regime. This relationship is thought to reflect the two-way interaction (with a positive feedback) between the respective oceanic and atmospheric anomalies. These North Atlantic SST anomalies are shown to be important in forcing significant responses in the midlatitude atmospheric circulation, including jet variability and the stormtrack. Further increases in oceanic and atmospheric resolution are expected to lead to additional improvements in the representation of Euro-Atlantic climate.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for near-future climate projection

Omrani, NE., Keenlyside, N., Matthes, K., Boljka, L., Zanchettin, D., Jungclaus, JH., Lubis, SW. 2022: Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for near-future climate projection. npj Clim Atmos Sci. https://doi.org/10.1038/s41612-022-00275-1

Summary: Northern Hemisphere (NH) climate has experienced various coherent wintertime multidecadal climate trends in stratosphere, troposphere, ocean, and cryosphere. However, the overall mechanistic framework linking these trends is not well established. Here we show, using long-term transient forced coupled climate simulation, that large parts of the coherent NH-multidecadal changes can be understood within a damped coupled stratosphere/troposphere/ocean-oscillation framework. Wave-induced downward propagating positive stratosphere/troposphere-coupled Northern Annular Mode (NAM) and associated stratospheric cooling initiate delayed thermohaline strengthening of Atlantic overturning circulation and extratropical Atlantic-gyres. These increase the poleward oceanic heat transport leading to Arctic sea-ice melting, Arctic warming amplification, and large-scale Atlantic warming, which in turn initiates wave-induced downward propagating negative NAM and stratospheric warming and therefore reverse the oscillation phase. This coupled variability improves the performance of statistical models, which project further weakening of North Atlantic Oscillation, North Atlantic cooling and hiatus in wintertime North Atlantic-Arctic sea-ice and global surface temperature just like the 1950s–1970s.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.