Research Activity 1 – Mechanisms giving rise to climate predictability
Mechanistic understanding is a prerequisite for identifying predictable relations in observations and models. RA1 aims to identify and model the interactions within and among climate system components that give rise to predictability. We will also consider external factors (greenhouse gases, volcanic eruptions, aerosols, solar forcing) that can add predictive skill. RA1’s basic approach is to identify the relevant physical mechanisms in observations and reanalysis (RA2), test them in model experiments, and improve their representation in NorCPM.
T1.1 Predictability here is hypothesized to be rooted in ocean inertia, and more specifically in poleward ocean heat transport. We will investigate the mechanisms and time scales involved in the propagation of ocean heat anomalies along the Gulf Stream’s extension toward the Arctic, how the anomalies interact with the atmosphere, their impact on sea ice predictability, and eventual influence on continental climate variability.
T1.2 It is unclear to what degree air-ice-ocean coupling can explain the observed climate variability. We will study large-scale air-ice-ocean coupling; interaction over sharp SST and sea ice fronts, and on synoptic scales; and identify coupled modes of climate variability and the impact of external forcing.
T1.3 A large component of predictability in the Atlantic-Arctic sector might arise from teleconnections from the tropics, the North Pacific, sea ice, snow cover and land surface conditions. Advanced atmospheric diagnostics will be used to study the importance and mechanisms of the various teleconnections.
T1.4 Models appear to underestimate predictable dynamics and suffer from large model biases35. Motivated by findings of T1.1-T1.3 (and other RA), improvements will be implemented into NorCPM to alleviate such problems. A key first step will be to develop a stratosphere-resolving version of NorCPM25. We will also consider model resolution, and implement new parameterisations.
Publications
Famooss Paolini, L., Omrani, N.-E., Bellucci, A., Athanasiadis, P.J., Ruggieri, P., Patrizio, C.R., Keenlyside, N. 2024: Non-stationarity in the NAO–Gulf Stream SST front interaction. J Clim. https://doi.org/10.1175/JCLI-D-23-0476.1 Summary: The interaction between the North Atlantic Oscillation (NAO) and the latitudinal shifts of the Gulf Stream sea surface temperature front (GSF) has been the subject of extensive investigations. There are indications of nonstationarity in this interaction, but differences in the methodologies used in previous studies make it difficult to draw consistent conclusions. Furthermore, there is a lack of consensus on the key mechanisms underlying the response of the GSF to the NAO. This study assesses the possible nonstationarity in the NAO–GSF interaction and the mechanisms underlying this interaction during 1950–2020, using reanalysis data. Results show that the NAO and GSF indices covary on the decadal time scale but only during 1972–2018. A secondary peak in the NAO–GSF covariability emerges on multiannual time scales but only during 2005–15. The nonstationarity in the decadal NAO–GSF covariability is also manifested in variations in their lead–lag relationship. Indeed, the NAO tends to lead the GSF shifts by 3 years during 1972–90 and by 2 years during 1990–2018. The response of the GSF to the NAO at the decadal time scale can be interpreted as the joint effect of the fast response of wind-driven oceanic circulation, the response of deep oceanic circulation, and the propagation of Rossby waves. However, there is evidence of Rossby wave propagation only during 1972–90. Here it is suggested that the nonstationarity of Rossby wave propagation caused the time lag between the NAO and the GSF shifts on the decadal time scale to differ between the two time periods. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Dörr, J., Årthun, M., Eldevik, T., Sandø, A. B. 2024: Expanding influence of Atlantic and Pacific Ocean heat transport on winter sea-ice variability in a warming Arctic. Geophys Res Lett Oceans. https://doi.org/10.1029/2023JC019900 Summary: The gradual anthropogenic-driven retreat of Arctic sea ice is overlaid by large natural (internal) year-to-year variability. In winter, sea-ice loss and variability are currently most pronounced in the Barents Sea. As the loss of winter sea ice continues in a warming world, other regions will experience increased sea-ice variability. In this study, we investigate to what extent this increased winter sea-ice variability in the future is connected to ocean heat transport (OHT). We analyze and contrast the present and future link between Pacific and Atlantic OHT and the winter Arctic sea-ice cover using simulations from seven single-model large ensembles. We find strong model agreement for a poleward expanding impact of OHT through the Bering Strait and the Barents Sea under continued sea-ice retreat. Model differences on the Atlantic side can be explained by the differences in the simulated variance of the Atlantic inflows. Model differences on the Pacific side can be explained by differences in the simulated strength of Pacific Water inflows, and upper-ocean stratification and vertical mixing on the Chukchi shelf. Our work highlights the increasing importance of the Pacific and Atlantic water inflows to the Arctic Ocean and highlights which factors are important to correctly simulate in order to capture the changing impact of OHT in the warming Arctic. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Wu, J., H. Fan, S. Lin, W. Zhong, S. He, N. Keenlyside, Yang, S. 2024: Boosting effect of strong western pole of the Indian Ocean Dipole on the decay of El Niño events. npj Clim Atmos Sci. https://doi.org/10.1038/s41612-023-00554-5 Summary: The Indian Ocean Basin (IOB) mode is believed to favor the decay of El Niño via modulating the zonal wind anomalies in the western equatorial Pacific, while the contribution of the Indian Ocean Dipole (IOD) mode to the following year’s El Niño remains highly controversial. In this study, we use the evolution of fast and slow decaying El Niño events during 1950–2020 to demonstrate that the positive IOD with a strong western pole prompts the termination of El Niño, whereas a weak western pole has no significant effect. The strong western pole of a positive IOD leads to a strong IOB pattern peaking in the late winter (earlier than normal), enhancing local convection and causing anomalous rising motions over the tropical Indian Ocean and sinking motions over the western tropical Pacific. The surface equatorial easterly wind anomalies on the western flank of the sinking motions stimulate oceanic equatorial upwelling Kelvin waves, which shoal the thermocline in the eastern equatorial Pacific and rapidly terminate the equatorial warming during El Niño. However, a weak western pole of the IOD induces a weak IOB mode that peaks in the late spring, and the above-mentioned cross-basin physical processes do not occur. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Boljka, L., Omrani, N.-E., Keenlyside, N. S. 2023: Identifying quasi-periodic variability using multivariate empirical mode decomposition: a case of the tropical Pacific. Weather Clim Dynam. https://wcd.copernicus.org/articles/4/1087/2023/wcd-4-1087-2023-discussion.html Summary: A variety of statistical tools have been used in climate science to gain a better understanding of the climate system’s variability on various temporal and spatial scales. However, these tools are mostly linear, stationary, or both. In this study, we use a recently developed nonlinear and nonstationary multivariate time series analysis tool – multivariate empirical mode decomposition (MEMD). MEMD is a powerful tool for objectively identifying (intrinsic) timescales of variability within a given spatio-temporal system without any timescale pre-selection. Additionally, a red noise significance test is developed to robustly extract quasi-periodic modes of variability. We apply these tools to reanalysis and observational data of the tropical Pacific. This reveals a quasi-periodic variability in the tropical Pacific on timescales ∼ 1.5–4.5 years, which is consistent with El Niño–Southern Oscillation (ENSO) – one of the most prominent quasi-periodic modes of variability in the Earth’s climate system. The approach successfully confirms the wellknown out-of-phase relationship of the tropical Pacific mean thermocline depth with sea surface temperature in the eastern tropical Pacific (recharge–discharge process). Furthermore, we find a co-variability between zonal wind stress in the western tropical Pacific and the tropical Pacific mean thermocline depth, which only occurs on the quasi-periodic timescale. MEMD coupled with a red noise test can therefore successfully extract (nonstationary) quasi-periodic variability from the spatio-temporal data and could be used in the future for identifying potential (new) relationships between different variables in the climate system. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Dörr, J.S., Bonan, D.B., Årthun, M., Svendsen, L., Wills, R.C.J. 2023: Forced and internal components of observed Arctic sea-ice changes. The Cryosphere. https://doi.org/10.5194/tc-17-4133-2023 Summary: The Arctic sea-ice cover is strongly influenced by internal variability on decadal timescales, affecting both short-term trends and the timing of the first ice-free summer. Several mechanisms of variability have been proposed, but how these mechanisms manifest both spatially and temporally remains unclear. The relative contribution of internal variability to observed Arctic sea-ice changes also remains poorly quantified. Here, we use a novel technique called low-frequency component analysis to identify the dominant patterns of winter and summer decadal Arctic sea-ice variability in the satellite record. The identified patterns account for most of the observed regional sea-ice variability and trends, and they thus help to disentangle the role of forced and internal sea-ice changes over the satellite record. In particular, we identify a mode of decadal ocean–atmosphere–sea-ice variability, characterized by an anomalous atmospheric circulation over the central Arctic, that accounts for approximately 30 % of the accelerated decline in pan-Arctic summer sea-ice area between 2000 and 2012 but accounts for at most 10 % of the decline since 1979. For winter sea ice, we find that internal variability has dominated decadal trends in the Bering Sea but has contributed less to trends in the Barents and Kara seas. These results, which detail the first purely observation-based estimate of the contribution of internal variability to Arctic sea-ice trends, suggest a lower estimate of the contribution from internal variability than most model-based assessments. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Årthun, M. 2023: Surface-Forced Variability in the Nordic Seas Overturning Circulation and Overflows. Geophys Res Lett. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023GL104158 Summary: Water mass transformation in the Nordic Seas and the associated overflow of dense waters across the Greenland-Scotland Ridge (GSR) acts to maintain the lower limb of the Atlantic meridional overturning circulation. Here, we use ocean and atmospheric reanalysis to assess the temporal variability in the Nordic Seas overturning circulation between 1950 and 2020 and its relation to surface buoyancy forcing. We find that variable surface-forced transformation of Atlantic waters in the eastern Nordic Seas can explain variations in overflow transport across the GSR. The production of dense water masses in the Greenland and Iceland Seas is of minor importance to overflow variability. The Nordic Seas overturning circulation shows pronounced multidecadal variability that is in phase with the Atlantic Multidecadal Variability (AMV) index, but no long-term trend. As the AMV is currently transitioning into its negative phase, the next decades could see a decreased overflow from the Nordic Seas. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Myksvoll, M. S., Sandø, A. B., Tjiputra, J., Samuelsen, A., Çağlar Yumruktepe, V., Li, C., Mousing, E. A., Bettencourt, J.P.H., Ottersen, G. 2023: Key physical processes and their model representation for projecting climate impacts on subarctic atlantic net primary production: A synthesis. Progress in Oceanography. https://doi.org/10.1016/j.pocean.2023.103084 Summary: Oceanic net primary production forms the foundation of marine ecosystems. Understanding the impact of climate change on primary production is therefore critical and we rely on Earth System Models to project future changes. Stemming from their use of different physical dynamics and biogeochemical processes, these models yield a large spread in long-term projections of change on both the global and regional scale. Here we review the key physical processes and biogeochemical parameterizations that influence the estimation of primary production in Earth System Models and synthesize the available projections of productivity in the subarctic regions of the North Atlantic. The key processes and modelling issues we focus on are mixed layer depth dynamics, model resolution and the complexity and parameterization of biogeochemistry. From the model mean of five CMIP6 models, we found a large increase in PP in areas where the sea ice retreats throughout the 21st century. Stronger stratification and declining MLD in the Nordic Seas, caused by sea ice loss and regional freshening, reduce the vertical flux of nutrients into the photic zone. Following the synthesis of the primary production among the CMIP6 models, we recommend a number of measures: constraining model hindcasts through the assimilation of high-quality long-term observational records to improve physical and biogeochemical parameterizations in models, developing better parameterizations for the sub-grid scale processes, enhancing the model resolution, downscaling and multi-model comparison exercises for improved regional projections of primary production. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Rivas, D., Counillon, F., Keenlyside, N. 2023: On dynamical downscaling of ENSO-induced oceanic anomalies off Baja California Peninsula, Mexico: role of the air-sea heat flux. Front Mar Sci. https://doi.org/10.3389/fmars.2023.1179649 Summary: The El Niño Southern Oscillation (ENSO) phenomenon is responsible for important physical and biogeochemical anomalies in the Northeastern Pacific Ocean. The event of 1997-98 has been one of the most intense in the last decades and it had large implications for the waters off Baja California (BC) Peninsula with a pronounced warm sea surface temperature (SST) anomaly adjacent to the coast. Downscaling of reanalysis products was carried out using a mesoscale-resolving numerical ocean model to reproduce the regional SST anomalies. The nested model has a 9 km horizontal resolution that extend from Cabo Corrientes to Point Conception. A downscaling experiment that computes surface fluxes online with bulk formulae achieves a better representation of the event than a version with prescribed surface fluxes. The nested system improves the representation of the large scale warming and the localized SST anomaly adjacent to BC Peninsula compared to the reanalysis product. A sensitivity analysis shows that air temperature and to a lesser extent wind stress anomalies are the primary drivers of the formation of BC temperature anomaly. The warm air-temperature anomalies advect from the near-equatorial regions and the central north Pacific and is associated with sea-level pressure anomalies in the synoptic-scale atmospheric circulation. This regional warm pool has a pronounced signature on sea level anomaly in agreement with observations, which may have implications for biogeochemistry. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Cheung, HN., Omrani, NE., Ogawa, F., Keenlyside, N., Nakamura, H., Zhou, W. 2023: Pacific oceanic front amplifies the impact of Atlantic oceanic front on North Atlantic blocking. npj Clim Atmos Sci 6, 61. https://doi.org/10.1038/s41612-023-00370-x Summary: Atmospheric blocking is a crucial driver of extreme weather events, but its climatological frequency is largely underestimated in state-of-the-art climate models, especially around the North Atlantic. While air-sea interaction along the North Atlantic oceanic frontal region is known to influence Atlantic blocking activity, remote effects from the Pacific have been less studied. Here we use semi-idealised experiments with an atmospheric general circulation model to demonstrate that the mid-latitude Pacific oceanic front is crucial for climatological Atlantic blocking activity. The front intensifies the Pacific eddy-driven jet that extends eastward towards the North Atlantic. The eastward-extended Pacific jet reinforces the North Atlantic circulation response to the Atlantic oceanic front, including the storm track activity and the eddy-driven jet. The strengthening of the eddy-driven jet reduces the Greenland blocking frequency. Moreover, the Pacific oceanic front greatly strengthens the stationary planetary-scale ridge in Europe. Together with a stronger northeastward extension of the Atlantic storm track, enhanced interaction between extratropical cyclones and the European ridge favours the occurrence of Euro-Atlantic blocking. Therefore, the North Atlantic circulation response amplified remotely by the Pacific oceanic front substantially increases Euro-Atlantic blocking frequency while decreasing Greenland blocking frequency. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Fransner, F., Olsen, A., Årthun, M., Counillon, F., Tjiputra, J., Samuelsen, A., Keenlyside, N. 2023: Phytoplankton abundance in the Barents Sea is predictable up to five years in advance. Commun Earth Environ. https://doi.org/10.1038/s43247-023-00791-9 Summary: The Barents Sea is a highly biologically productive Arctic shelf sea with several commercially important fish stocks. Interannual-to-decadal predictions of its ecosystem would therefore be valuable for marine resource management. Here, we demonstrate that the abundance of phytoplankton, the base of the marine food web, can be predicted up to five years in advance in the Barents Sea with the Norwegian Climate Prediction Model. We identify two different mechanisms giving rise to this predictability; 1) in the southern ice-free Atlantic Domain, skillful prediction is a result of the advection of waters with anomalous nitrate concentrations from the Subpolar North Atlantic; 2) in the northern Polar Domain, phytoplankton predictability is a result of the skillful prediction of the summer ice concentration, which influences the light availability. The skillful prediction of the phytoplankton abundance is an important step forward in the development of numerical ecosystem predictions of the Barents Sea. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Group members
Role: Data manager and software engineer (2021-present)
E-mail: tarkan.bilge@uib.no
Role: PhD student affiliated to RA1 (2019-present)
E-mail: Evangelia.Efstathiou@uib.no
Role: PhD student affiliated to RA1 (2021-present)
E-mail: luca.famoosspaolini@unive.it
Role: Masters' assignment in RA1&RA3 (2021)
E-mail: mahaut.vareilles@uib.no
Role: PhD student in RA1 and RA3 (2019-present)
E-mail: Leilane.Passos@uib.no
Role: Masters student affilitated to RA1 (2021-2022)
E-mail: mahaut.vareilles@uib.no
Role: Postdoc affiliated to RA1 (2019-present)
E-mail: Francine.Schevenhoven@uib.no
Role: PhD student affiliated to RA1 (2021-present)
E-mail: Johanne.Skrefsrud@uib.no