Tag: årthun

Future strengthening of the Nordic Seas overturning circulation

Årthun, M., Asbjørnsen, H., Chafik, L., Johnson, H.L., Våge, K. 2023: Future strengthening of the Nordic Seas overturning circulation. Nat Commun. https://www.nature.com/articles/s41467-023-37846-6

Summary: The overturning circulation in the Nordic Seas involves the transformation of warm Atlantic waters into cold, dense overflows. These overflow waters return to the North Atlantic and form the headwaters to the deep limb of the Atlantic meridional overturning circulation (AMOC). The Nordic Seas are thus a key component of the AMOC. However, little is known about the response of the overturning circulation in the Nordic Seas to future climate change. Here we show using global climate models that, in contrast to the North Atlantic, the simulated density-space overturning circulation in the Nordic Seas increases throughout most of the 21st century as a result of enhanced horizontal circulation and a strengthened zonal density gradient. The increased Nordic Seas overturning is furthermore manifested in the overturning circulation in the eastern subpolar North Atlantic. A strengthened Nordic Seas overturning circulation could therefore be a stabilizing factor in the future AMOC.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Rapid sea ice changes in the future Barents Sea

Rieke, O., Årthun, M., Dörr, J.S. 2023: Rapid sea ice changes in the future Barents Sea. The Cryosphere. https://doi.org/10.5194/tc-17-1445-2023

Summary: Observed and future winter Arctic sea ice loss is strongest in the Barents Sea. However, the anthropogenic signal of the sea ice decline is superimposed by pronounced internal variability that represents a large source of uncertainty in future climate projections. A notable manifestation of internal variability is rapid ice change events (RICEs) that greatly exceed the anthropogenic trend. These RICEs are associated with large displacements of the sea ice edge which could potentially have both local and remote impacts on the climate system. In this study we present the first investigation of the frequency and drivers of RICEs in the future Barents Sea, using multi-member ensemble simulations from CMIP5 and CMIP6. A majority of RICEs are triggered by trends in ocean heat transport or surface heat fluxes. Ice loss events are associated with increasing trends in ocean heat transport and decreasing trends in surface heat loss. RICEs are a common feature of the future Barents Sea until the region becomes close to ice-free. As their evolution over time is closely tied to the average sea ice conditions, rapid ice changes in the Barents Sea may serve as a precursor for future changes in adjacent seas.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Impact of initialization methods on the predictive skill in NorCPM: an Arctic–Atlantic case study

Passos, L., Langehaug, HR., Årthun, M., Eldevik, T., Bethke, I., Kimmritz, M. 2022: Impact of initialization methods on the predictive skill in NorCPM: an Arctic–Atlantic case study. Clim Dyn. https://doi.org/10.1007/s00382-022-06437-4

Summary: The skilful prediction of climatic conditions on a forecast horizon of months to decades into the future remains a main scientific challenge of large societal benefit. Here we assess the hindcast skill of the Norwegian Climate Prediction Model (NorCPM) for sea surface temperature (SST) and sea surface salinity (SSS) in the Arctic–Atlantic region focusing on the impact of different initialization methods. We find the skill to be distinctly larger for the Subpolar North Atlantic than for the Norwegian Sea, and generally for all lead years analyzed. For the Subpolar North Atlantic, there is furthermore consistent benefit in increasing the amount of data assimilated, and also in updating the sea ice based on SST with strongly coupled data assimilation. The predictive skill is furthermore significant for at least two model versions up to 8–10 lead years with the exception for SSS at the longer lead years. For the Norwegian Sea, significant predictive skill is more rare; there is relatively higher skill with respect to SSS than for SST. A systematic benefit from more complex data assimilation approach can not be identified for this region. Somewhat surprisingly, skill deteriorates quite consistently for both the Subpolar North Atlantic and the Norwegian Sea when going from CMIP5 to corresponding CMIP6 versions. We find this to relate to change in the regional performance of the underlying physical model that dominates the benefit from initialization.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

On the trail of the disappearing polar sea ice

Jakob Dörr is a PhD student at the University of Bergen, working with Marius Årthun in the BCPU research area on “Understanding mechanisms for climate predictability”. In the spring of 2022, he travelled to California, to visit Dave Bonan. For four weeks, Jakob had the opportunity to work with Dave and his working group at the California Institute of Technology (Caltech) in Pasadena. Dave is also a PhD student, and also interested in understanding present and future changes in the Earth’s sea ice cover, and which processes these are caused by.

In the Arctic, the sea ice cover has strongly declined in all seasons over the last 40 years, and this is mostly due to the Earth’s warming, driven by anthropogenic greenhouse gas emissions. However, because the sea ice interacts with the ocean and the atmosphere and is thus part of the chaotic climate system, it is affected by random fluctuations and internal variability which is independent from the long-term warming trend. These variability modes can affect the sea ice for periods of up to several decades. It is therefore not entirely clear exactly how much of the sea ice loss we have observed over the last decades was due to global warming, and how much was because of internal variability. Dave and Jakob are working to detect and separate those variability modes that affect the sea ice over long periods (decades and longer) in the observational record of sea ice. They use a novel technique developed by Robb Wills at the University of Washington.

Jakob and Dave are hoping to determine for different regions of the Arctic, which modes of variability affect the sea ice cover, and how much their influence compares to the long-term sea ice loss due to global warming. This will help to understand and attribute past sea ice changes and enhance our ability to predict the future regional sea ice loss. While Jakob focuses on the Arctic, Dave applies the same technique to the Antarctic, where a steady increase in sea ice cover over the last decades, followed by a strong decline since 2016, has been observed. Their analysis might shed some light on the mechanisms behind this puzzling evolution, and how much of it was caused by changes due to global warming. The goal of the BCPU-supported visit was to prepare work for two separate publications on Arctic and Antarctic sea ice, respectively, and to discuss how experience from observations can be applied to analyse climate model simulations of future sea ice change.


“During the visit, we exchanged our experience and discussed new ideas for our analysis. I also got to meet scientists in both the Oceanography (Andrew Thompson) and the Climate Dynamics (Tapio Schneider) group at Caltech. I was also lucky to come at a time where Caltech was opening fully again, with many international scientists visiting the institute. Furthermore, I got invited to be part of a sea ice reading course where we had intense discussions about sea ice models, trends and mechanisms with Dave and other members of the Oceanography group. On top of that, I had the chance to visit some friends from the Scripps Institute of Oceanography in San Diego. I had a lot of interactions during the visit and learned a lot about how science is conducted at Caltech and other US institutions. I hope that I can continue the collaboration between Caltech and the Bjerknes Center beyond our work on sea ice observations. The visit showed me how important it is to physically meet people to exchange ideas and develop collaborations across the globe. There are plans that Dave visits us in Bergen next spring, and I hope to return to Pasadena after that.” – Jakob Dörr

Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway

Langehaug, H. R., Ortega, P., Counillon, F., Matei, D., Maroon, E., Keenlyside, N., Mignot, J., Wang, Y., Swingedouw, D., Bethke, I., Yang, S., Danabasoglu, G., Bellucci, A., Ruggieri, P., Nicolì, D., Årthun, M. 2022: Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway. J Clim. https://doi.org/10.1007/s10236-022-01523-x

Summary: In this study, we find that dynamical prediction systems and their respective climate models struggle to realistically represent ocean surface temperature variability in the eastern subpolar North Atlantic and Nordic seas on interannual-to-decadal time scales. In previous studies, ocean advection is proposed as a key mechanism in propagating temperature anomalies along the Atlantic water pathway toward the Arctic Ocean. Our analysis suggests that the predicted temperature anomalies are not properly circulated to the north; this is a result of model errors that seems to be exacerbated by the effect of initialization shocks and forecast drift. Better climate predictions in the study region will thus require improving the initialization step, as well as enhancing process representation in the climate models.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Mechanisms of regional winter sea-ice variability in a warming Arctic

Dörr, J., Årthun, M., Eldevik, T., Madonna, E. 2021: Mechanisms of regional winter sea-ice variability in a warming Arctic. Journal of Climate. https://doi.org/10.1175/JCLI-D-21-0149.1 .

Summary: The Arctic winter sea ice cover is in retreat overlaid by large internal variability. Changes to sea ice are driven by exchange of heat, momentum, and freshwater within and between the ocean and the atmosphere. Using a combination of observations and output from the Community Earth System Model Large Ensemble, we analyze and contrast present and future drivers of the regional winter sea ice cover. Consistent with observations and previous studies, we find that for the recent decades ocean heat transport though the Barents Sea and Bering Strait is a major source of sea ice variability in the Atlantic and Pacific sectors of the Arctic, respectively. Future projections show a gradually expanding footprint of Pacific and Atlantic inflows highlighting the importance of future Atlantification and Pacification of the Arctic Ocean. While the dominant hemispheric modes of winter atmospheric circulation are only weakly connected to the sea ice, we find distinct local atmospheric circulation patterns associated with present and future regional sea ice variability in the Atlantic and Pacific sectors, consistent with heat and moisture transport from lower latitudes. Even if the total freshwater input from rivers is projected to increase substantially, its influence on simulated sea ice is small in the context of internal variability.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Variable Nordic Seas Inflow Linked to Shifts in North Atlantic Circulation

Asbjørnsen, H., Johnson, H.L., Årthun, M. 2021: Variable Nordic Seas Inflow Linked to Shifts in North Atlantic Circulation. Journal of Climate. https://doi.org/10.1175/JCLI-D-20-0917.1 .

Summary: The inflow across the Iceland-Scotland Ridge determines the amount of heat supplied to the Nordic Seas from the subpolar North Atlantic (SPNA). Consequently, variable inflow properties and volume transport at the ridge influence marine ecosystems and sea ice extent further north. Here, we identify the upstream pathways of the Nordic Seas inflow, and assess the mechanisms responsible for interannual inflow variability. Using an eddy-permitting ocean model hindcast and a Lagrangian analysis tool, numerical particles are released at the ridge during 1986-2015 and tracked backward in time. We find an inflow that is well-mixed in terms of its properties, where 64% comes from the subtropics and 26% has a subpolar or Arctic origin. The local instantaneous response to the NAO is important for the overall transport of both subtropical and Arctic-origin waters at the ridge. In the years before reaching the ridge, the subtropical particles are influenced by atmospheric circulation anomalies in the gyre boundary region and over the SPNA, forcing shifts in the North Atlantic Current (NAC) and the subpolar front. An equatorward shifted NAC and westward shifted subpolar front correspond to a warmer, more saline inflow. Atmospheric circulation anomalies over the SPNA also affect the amount of Arctic-origin water re-routed from the Labrador Current toward the Nordic Seas. A high transport of Arctic-origin water is associated with a colder, fresher inflow across the Iceland-Scotland Ridge. The results thus demonstrate the importance of gyre dynamics and wind forcing in affecting the Nordic Seas inflow properties and volume transport.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Skilful prediction of cod stocks in the North and Barents Sea a decade in advance

Koul, V., Sguotti, C., Årthun, M., Brune, S., Düsterhus, Bogstad, B., Ottersen, G., Baehr, J., Schrum, C. 2021: Skilful prediction of cod stocks in the North and Barents Sea a decade in advance. Nature Communications Earth & Environment. https://doi.org/10.1038/s43247-021-00207-6 .

Summary: Reliable information about the future state of the ocean and fish stocks is necessary for informed decision-making by fisheries scientists, managers and the industry. However, regional ocean climate and fish stock predictions for the next few years, and up to 10 years, have until now had low forecast skill. In this article, the authors provide skilful forecasts of the biomass of cod stocks in the North and Barents Seas 10 years in advance. These point to a continuation of unfavorable oceanic conditions for the North Sea cod in the coming years, which would inhibit its recovery at present fishing levels, and a decrease in Northeast Arctic cod stock compared to the recent high levels.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Future Abrupt Changes in Winter Barents Sea Ice Area

Rieke, Ole (2021-06-01). Future Abrupt Changes in Winter Barents Sea Ice Area (Master’s thesis, University of Bergen, Bergen, Norway). https://bora.uib.no/bora-xmlui/handle/11250/2762637 .

Summary: The Barents Sea is an area of strong anthropogenic winter sea ice loss that is superimposed by pronounced internal variability on interannual to multidecadal timescales. This internal variability represents a source of large uncertainty in future climate projections in the Barents Sea. This study aims to investigate internal variability of Barents Sea ice area and its driving mechanisms in future climate simulations of the Community Earth System Model Large Ensemble under the RCP8.5 climate scenario. We find that although sea ice area is projected to decline towards ice-free conditions, internal variability remains strong until late in the 21st century. A substantial part of this variability is expressed as events of abrupt change in the sea ice cover. These internally-driven events with a duration of 5-9 years can mask or enhance the anthropogenically-forced sea ice trend and lead to substantial ice growth or ice loss. Abrupt sea ice trends are a common feature of the Barents Sea in the future until the region becomes close to ice-free. Interannual variability in general, and in form of these sub-decadal events specifically, is forced by a combination of ocean heat transport, meridional winds and ice import, with ocean heat transport as the most dominant contributor. Our analysis shows that the influence of these mechanisms remains largely unchanged throughout the simulation. Investigation of a simulation from the same model where global warming is limited to 2°C shows that both mean and variability of sea ice area in the Barents Sea can be sustained at a substantial level in the future, and that abrupt changes can continue to occur frequently and produce sea ice cover of similar extent to present day climate. This highlights that future emissions play an essential role in the further decline of the Barents Sea winter sea ice cover. The results of this thesis contribute to a better understanding of Arctic sea ice variability on different time scales, and especially on the role of internal variability which is important in order to predict future sea ice changes under anthropogenic warming.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Future Abrupt Changes in Winter Barents Sea Ice Area

Rieke, Ole (2021-06-01). Future Abrupt Changes in Winter Barents Sea Ice Area (Master’s thesis, University of Bergen, Bergen, Norway). https://bora.uib.no/bora-xmlui/handle/11250/2762637

Summary: The Barents Sea is an area of strong anthropogenic winter sea ice loss that is superimposed by pronounced internal variability on interannual to multidecadal timescales. This internal variability represents a source of large uncertainty in future climate projections in the Barents Sea. This study aims to investigate internal variability of Barents Sea ice area and its driving mechanisms in future climate simulations of the Community Earth System Model Large Ensemble under the RCP8.5 climate scenario. We find that although sea ice area is projected to decline towards ice-free conditions, internal variability remains strong until late in the 21st century. A substantial part of this variability is expressed as events of abrupt change in the sea ice cover. These internally-driven events with a duration of 5-9 years can mask or enhance the anthropogenically-forced sea ice trend and lead to substantial ice growth or ice loss. Abrupt sea ice trends are a common feature of the Barents Sea in the future until the region becomes close to ice-free. Interannual variability in general, and in form of these sub-decadal events specifically, is forced by a combination of ocean heat transport, meridional winds and ice import, with ocean heat transport as the most dominant contributor. Our analysis shows that the influence of these mechanisms remains largely unchanged throughout the simulation. Investigation of a simulation from the same model where global warming is limited to 2°C shows that both mean and variability of sea ice area in the Barents Sea can be sustained at a substantial level in the future, and that abrupt changes can continue to occur frequently and produce sea ice cover of similar extent to present day climate. This highlights that future emissions play an essential role in the further decline of the Barents Sea winter sea ice cover. The results of this thesis contribute to a better understanding of Arctic sea ice variability on different time scales, and especially on the role of internal variability which is important in order to predict future sea ice changes under anthropogenic warming.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.