Category: PublicationsRA3

Mitigating climate biases in the mid-latitude North Atlantic by increasing model resolution: SST gradients and their relation to blocking and the jet

Athanasiadis, P.J., Ogawa, F., Omrani, N.-E., Keenlyside, N., Schiemann, R., Baker, A.J., Vidale, P.L., Bellucci, A., Ruggieri, P., Haarsma, R., Roberts, M., Roberts, C., Novak, L., Gualdi, S. 2022: Mitigating climate biases in the mid-latitude North Atlantic by increasing model resolution: SST gradients and their relation to blocking and the jet. J Clim. https://doi.org/10.1007/s10236-022-01523-x

Summary: Starting to resolve the oceanic mesoscale in climate models is a step change in model fidelity. This study examines how certain obstinate biases in the midlatitude North Atlantic respond to increasing resolution (from 1° to 0.25° in the ocean) and how such biases in sea surface temperature (SST) affect the atmosphere. Using a multi-model ensemble of historical climate simulations run at different horizontal resolutions, it is shown that a severe cold SST bias in the central North Atlantic, common to many ocean models, is significantly reduced with increasing resolution. The associated bias in the time-mean meridional SST gradient is shown to relate to a positive bias in low-level baroclinicity, while the cold SST bias causes biases also in static stability and diabatic heating in the interior of the atmosphere. The changes in baroclinicity and diabatic heating brought by increasing resolution lead to improvements in European blocking and eddy-driven jet variability. Across the multi-model ensemble a clear relationship is found between the climatological meridional SST gradients in the broader Gulf Stream Extension area and two aspects of the atmospheric circulation: the frequency of high-latitude blocking and the southern-jet regime. This relationship is thought to reflect the two-way interaction (with a positive feedback) between the respective oceanic and atmospheric anomalies. These North Atlantic SST anomalies are shown to be important in forcing significant responses in the midlatitude atmospheric circulation, including jet variability and the stormtrack. Further increases in oceanic and atmospheric resolution are expected to lead to additional improvements in the representation of Euro-Atlantic climate.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Metrics of the Hadley circulation strength and associated circulation trends

Pikovnik, M., Zaplotnik, Ž., Boljka, L., Žagar, N. 2022: Metrics of the Hadley circulation strength and associated circulation trends. Weather Clim Dynam. https://doi.org/10.5194/wcd-3-625-2022

Summary: This study compares trends in the Hadley cell (HC) strength using different metrics applied to the ECMWF ERA5 and ERA-Interim reanalyses for the period 1979–2018. The HC strength is commonly evaluated by metrics derived from the mass-weighted zonal-mean stream function in isobaric coordinates. Other metrics include the upper tropospheric velocity potential, the vertical velocity in the mid-troposphere, and the water vapour transport in the lower troposphere. Seven known metrics of HC strength are complemented here by a metric of the spatially averaged HC strength, obtained by averaging the stream function in the latitude–pressure (φp) plane, and by the total energy of zonal-mean unbalanced circulation in the normal-mode function decomposition. It is shown that metrics, which rely on single-point values in the φp plane, produce unreliable 40-year trends in both the northern and southern HCs, especially in ERA-Interim; magnitudes and even the signs of the trends depend on the choice of the HC strength metric. The two new metrics alleviate the vertical and meridional inhomogeneities of the trends in HC strength. The unbalanced energy metric suggests a positive HC trend in both reanalyses, whereas the metric based on averaging the stream function finds a significant positive trend only in ERA5.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

WMO Global Annual to Decadal Climate Update: A Prediction for 2021–25

Hermanson, L., Smith, D., Seabrook, M., Bilbao, R., Doblas-Reyes, F., Tourigny, E., Lapin, V., Kharin, V.V., Merryfield, W.J., Sospedra-Alfonso, R., Athanasiadis, P., Nicoli, D., Gualdi, S., Dunstone, N., Eade, R., Scaife, A., Collier, M., O’Kane, T., Kitsios, V., Sandery, P., Pankatz, K., Früh, B., Pohlmann, H., Müller, W., Kataoka, T., Tatebe, H., Ishii M., Imada, Y., Kruschke, T., Koenigk, T., Pasha Karami, M., Yang, S., Tian, T., Zhang, L., Delworth, T., Yang, X., Zeng, F., Wang, Y., Counillon, F., Keenlyside, N.S., Bethke, I., Lean, J., Luterbacher, J., Kumar Kolli, R., Kumar, A. 2022: WMO Global Annual to Decadal Climate Update: A Prediction for 2021–25. BAMS https://doi.org/10.1175/BAMS-D-20-0311.1 .

Summary: As climate change accelerates, societies and climate-sensitive socioeconomic sectors cannot continue to rely on the past as a guide to possible future climate hazards. Operational decadal predictions offer the potential to inform current adaptation and increase resilience by filling the important gap between seasonal forecasts and climate projections. The World Meteorological Organization (WMO) has recognized this and in 2017 established the WMO Lead Centre for Annual to Decadal Climate Predictions (shortened to “Lead Centre” below), which annually provides a large multimodel ensemble of predictions covering the next 5 years. This international collaboration produces a prediction that is more skillful and useful than any single center can achieve. One of the main outputs of the Lead Centre is the Global Annual to Decadal Climate Update (GADCU), a consensus forecast based on these predictions. This update includes maps showing key variables, discussion on forecast skill, and predictions of climate indices such as the global mean near-surface temperature and Atlantic multidecadal variability. it also estimates the probability of the global mean temperature exceeding 1.5°C above preindustrial levels for at least 1 year in the next 5 years, which helps policy-makers understand how closely the world is approaching this goal of the Paris Agreement. This paper, written by the authors of the GADCU, introduces the GADCU, presents its key outputs, and briefly discusses its role in providing vital climate information for society now and in the future..

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway

Langehaug, H. R., Ortega, P., Counillon, F., Matei, D., Maroon, E., Keenlyside, N., Mignot, J., Wang, Y., Swingedouw, D., Bethke, I., Yang, S., Danabasoglu, G., Bellucci, A., Ruggieri, P., Nicolì, D., Årthun, M. 2022: Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway. J Clim. https://doi.org/10.1007/s10236-022-01523-x

Summary: In this study, we find that dynamical prediction systems and their respective climate models struggle to realistically represent ocean surface temperature variability in the eastern subpolar North Atlantic and Nordic seas on interannual-to-decadal time scales. In previous studies, ocean advection is proposed as a key mechanism in propagating temperature anomalies along the Atlantic water pathway toward the Arctic Ocean. Our analysis suggests that the predicted temperature anomalies are not properly circulated to the north; this is a result of model errors that seems to be exacerbated by the effect of initialization shocks and forecast drift. Better climate predictions in the study region will thus require improving the initialization step, as well as enhancing process representation in the climate models.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Assessing the influence of sea surface temperature and arctic sea ice cover on the uncertainty in the boreal winter future climate projections

Cheung, HN., Keenlyside, N., Koenigk, T., Yang, S., Tian, T., Xu, Z., Gao, Y., Ogawa, F., Omrani, N.-E., Qiao, S., Zhou, W. 2022: Assessing the influence of sea surface temperature and arctic sea ice cover on the uncertainty in the boreal winter future climate projections. Clim. Dyn. https://doi.org/10.1007/s00382-022-06136-0

Summary: We investigate the uncertainty (i.e., inter-model spread) in future projections of the boreal winter climate, based on the forced response of ten models from the CMIP5 following the RCP8.5 scenario. The uncertainty in the forced response of sea level pressure (SLP) is large in the North Pacific, the North Atlantic, and the Arctic. A major part of these uncertainties (31%) is marked by a pattern with a center in the northeastern Pacific and a dipole over the northeastern Atlantic that we label as the Pacific–Atlantic SLP uncertainty pattern (PA∆SLP). The PA∆SLP is associated with distinct global sea surface temperature (SST) and Arctic sea ice cover (SIC) perturbation patterns. To better understand the nature of the PA∆SLP, these SST and SIC perturbation patterns are prescribed in experiments with two atmospheric models (AGCMs): CAM4 and IFS. The AGCM responses suggest that the SST uncertainty contributes to the North Pacific SLP uncertainty in CMIP5 models, through tropical–midlatitude interactions and a forced Rossby wavetrain. The North Atlantic SLP uncertainty in CMIP5 models is better explained by the combined effect of SST and SIC uncertainties, partly related to a Rossby wavetrain from the Pacific and air-sea interaction over the North Atlantic. Major discrepancies between the CMIP5 and AGCM forced responses over northern high-latitudes and continental regions are indicative of uncertainties arising from the AGCMs. We analyze the possible dynamic mechanisms of these responses, and discuss the limitations of this work.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Changes in Arctic Stratification and Mixed Layer Depth Cycle: A Modeling Analysis

Hordoir, R., Skagseth, Ø., Ingvaldsen, R.B., Sandø, A.B., Löptien, U., Dietze, H., Gierisch, A.M.U., Assmann K.A., Lundesgaard,Ø., Lind, S. 2022: Changes in Arctic Stratification and Mixed Layer Depth Cycle: A Modeling Analysis. JGR Oceans. https://doi.org/10.1029/2021JC017270

Summary: We analyzed the results of an ocean model simulation for the Arctic and North Atlantic oceans for the period 1970–2019. Our model is in line with the recent observed changes in the Arctic Ocean and allows, in contrast to the rather sparse observations, a detailed assessment of stratification changes. These changes will affect the Arctic ecosystem and are also believed to affect the large scale ocean circulation. We show that major changes in upper ocean conditions are caused by changes in the fresh water supply by sea ice and varying effect of the wind on regions that are now becoming ice-free. We also study the effect of changes in river runoff into the Arctic Ocean. Our study shows that an increase in river runoff can change the coastal circulation and results, paradoxically, in regions of higher salinity. These results point to the importance of modeling tools when it comes to a better understanding of ocean processes in a changing climate.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

NorCPM1 and its contribution to CMIP6 DCPP

Bethke, I., Wang, Y., Counillon, F., Keenlyside, N., Kimmritz, M., Fransner, F., Samuelsen, A., Langehaug, H., Svendsen, L., Chiu, P.-G., Passos, L., Bentsen, M., Guo, C., Gupta, A., Tjiputra, J., Kirkevåg, A., Olivié, D., Seland, Ø., Solsvik Vågane, J., Fan, Y., Eldevik, T. 2021: NorCPM1 and its contribution to CMIP6 DCPP. Geosci Model Dev. https://doi.org/10.5194/gmd-14-7073-2021 .

For an easy-to-understand overview, we recommend starting with this neat article written by the Climate Futures team, a project connected to BCPU: “New Study: Decadal Climate Forecasts From The Norwegian Climate Prediction Model” (les heller på norsk).

Summary: The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It combines the Norwegian Earth System Model version 1 (NorESM1) – which features interactive aerosol–cloud schemes and an isopycnic-coordinate ocean component with biogeochemistry – with anomaly assimilation of sea surface temperature (SST) and -profile observations using the ensemble Kalman filter (EnKF).

We describe the Earth system component and the data assimilation (DA) scheme, highlighting implementation of new forcings, bug fixes, retuning and DA innovations. Notably, NorCPM1 uses two anomaly assimilation variants to assess the impact of sea ice initialization and climatological reference period: the first (i1) uses a 1980–2010 reference climatology for computing anomalies and the DA only updates the physical ocean state; the second (i2) uses a 1950–2010 reference climatology and additionally updates the sea ice state via strongly coupled DA of ocean observations.

We assess the baseline, reanalysis and prediction performance with output contributed to the Decadal Climate Prediction Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6). The NorESM1 simulations exhibit a moderate historical global surface temperature evolution and tropical climate variability characteristics that compare favourably with observations. The climate biases of NorESM1 using CMIP6 external forcings are comparable to, or slightly larger than those of, the original NorESM1 CMIP5 model, with positive biases in Atlantic meridional overturning circulation (AMOC) strength and Arctic sea ice thickness, too-cold subtropical oceans and northern continents, and a too-warm North Atlantic and Southern Ocean. The biases in the assimilation experiments are mostly unchanged, except for a reduced sea ice thickness bias in i2 caused by the assimilation update of sea ice, generally confirming that the anomaly assimilation synchronizes variability without changing the climatology. The i1 and i2 reanalysis/hindcast products overall show comparable performance. The benefits of DA-assisted initialization are seen globally in the first year of the prediction over a range of variables, also in the atmosphere and over land. External forcings are the primary source of multiyear skills, while added benefit from initialization is demonstrated for the subpolar North Atlantic (SPNA) and its extension to the Arctic, and also for temperature over land if the forced signal is removed. Both products show limited success in constraining and predicting unforced surface ocean biogeochemistry variability. However, observational uncertainties and short temporal coverage make biogeochemistry evaluation uncertain, and potential predictability is found to be high. For physical climate prediction, i2 performs marginally better than i1 for a range of variables, especially in the SPNA and in the vicinity of sea ice, with notably improved sea level variability of the Southern Ocean. Despite similar skills, i1 and i2 feature very different drift behaviours, mainly due to their use of different climatologies in DA; i2 exhibits an anomalously strong AMOC that leads to forecast drift with unrealistic warming in the SPNA, whereas i1 exhibits a weaker AMOC that leads to unrealistic cooling. In polar regions, the reduction in climatological ice thickness in i2 causes additional forecast drift as the ice grows back. Posteriori lead-dependent drift correction removes most hindcast differences; applications should therefore benefit from combining the two products.

The results confirm that the large-scale ocean circulation exerts strong control on North Atlantic temperature variability, implying predictive potential from better synchronization of circulation variability. Future development will therefore focus on improving the representation of mean state and variability of AMOC and its initialization, in addition to upgrades of the atmospheric component. Other efforts will be directed to refining the anomaly assimilation scheme – to better separate internal and forced signals, to include land and atmosphere initialization and new observational types – and improving biogeochemistry prediction capability. Combined with other systems, NorCPM1 may already contribute to skilful multiyear climate prediction that benefits society.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Future Abrupt Changes in Winter Barents Sea Ice Area (Master’s thesis)

Rieke, Ole (2021-06-01). Future Abrupt Changes in Winter Barents Sea Ice Area (Master’s thesis, University of Bergen, Bergen, Norway). https://bora.uib.no/bora-xmlui/handle/11250/2762637 .

Summary: The Barents Sea is an area of strong anthropogenic winter sea ice loss that is superimposed by pronounced internal variability on interannual to multidecadal timescales. This internal variability represents a source of large uncertainty in future climate projections in the Barents Sea. This study aims to investigate internal variability of Barents Sea ice area and its driving mechanisms in future climate simulations of the Community Earth System Model Large Ensemble under the RCP8.5 climate scenario. We find that although sea ice area is projected to decline towards ice-free conditions, internal variability remains strong until late in the 21st century. A substantial part of this variability is expressed as events of abrupt change in the sea ice cover. These internally-driven events with a duration of 5-9 years can mask or enhance the anthropogenically-forced sea ice trend and lead to substantial ice growth or ice loss. Abrupt sea ice trends are a common feature of the Barents Sea in the future until the region becomes close to ice-free. Interannual variability in general, and in form of these sub-decadal events specifically, is forced by a combination of ocean heat transport, meridional winds and ice import, with ocean heat transport as the most dominant contributor. Our analysis shows that the influence of these mechanisms remains largely unchanged throughout the simulation. Investigation of a simulation from the same model where global warming is limited to 2°C shows that both mean and variability of sea ice area in the Barents Sea can be sustained at a substantial level in the future, and that abrupt changes can continue to occur frequently and produce sea ice cover of similar extent to present day climate. This highlights that future emissions play an essential role in the further decline of the Barents Sea winter sea ice cover. The results of this thesis contribute to a better understanding of Arctic sea ice variability on different time scales, and especially on the role of internal variability which is important in order to predict future sea ice changes under anthropogenic warming.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Relating model bias and prediction skill in the equatorial Atlantic

Counillon, F., Keenlyside, N., Toniazzo, T., Koseki, S., Demissie, T., Bethke, I., Wang, Y. 2021: Relating model bias and prediction skill in the equatorial Atlantic. Climate Dynamics. https://doi.org/10.1007/s00382-020-05605-8

For a nice overview of the article, check out this news piece by our partner NERSC, also involved in our collaborative projects TRIATLAS and STERCP.

Summary: We investigate the impact of large climatological biases in the tropical Atlantic on reanalysis and seasonal prediction performance using the Norwegian Climate Prediction Model (NorCPM) in a standard and an anomaly coupled configuration. Anomaly coupling corrects the climatological surface wind and sea surface temperature (SST) fields exchanged between oceanic and atmospheric models, and thereby significantly reduces the climatological model biases of precipitation and SST. NorCPM combines the Norwegian Earth system model with the ensemble Kalman filter and assimilates SST and hydrographic profiles. We perform a reanalysis for the period 1980–2010 and a set of seasonal predictions for the period 1985–2010 with both model configurations. Anomaly coupling improves the accuracy and the reliability of the reanalysis in the tropical Atlantic, because the corrected model enables a dynamical reconstruction that satisfies better the observations and their uncertainty. Anomaly coupling also enhances seasonal prediction skill in the equatorial Atlantic to the level of the best models of the North American multi-model ensemble, while the standard model is among the worst. However, anomaly coupling slightly damps the amplitude of Atlantic Niño and Niña events. The skill enhancements achieved by anomaly coupling are largest for forecast started from August and February. There is strong spring predictability barrier, with little skill in predicting conditions in June. The anomaly coupled system show some skill in predicting the secondary Atlantic Niño-II SST variability that peaks in November–December from August 1st.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

North Atlantic climate far more predictable than models imply

Smith, D.M., Scaife, A.A., Eade, R. et al. 2020: North Atlantic climate far more predictable than models imply. Nature. https://doi.org/10.1038/s41586-020-2525-0 .

Summary: Quantifying signals and uncertainties in climate models is essential for the detection, attribution, prediction and projection of climate change1,2,3. Although inter-model agreement is high for large-scale temperature signals, dynamical changes in atmospheric circulation are very uncertain4. This leads to low confidence in regional projections, especially for precipitation, over the coming decades5,6. The chaotic nature of the climate system7,8,9 may also mean that signal uncertainties are largely irreducible. However, climate projections are difficult to verify until further observations become available. Here we assess retrospective climate model predictions of the past six decades and show that decadal variations in North Atlantic winter climate are highly predictable, despite a lack of agreement between individual model simulations and the poor predictive ability of raw model outputs. Crucially, current models underestimate the predictable signal (the predictable fraction of the total variability) of the North Atlantic Oscillation (the leading mode of variability in North Atlantic atmospheric circulation) by an order of magnitude. Consequently, compared to perfect models, 100 times as many ensemble members are needed in current models to extract this signal, and its effects on the climate are underestimated relative to other factors. To address these limitations, we implement a two-stage post-processing technique. We first adjust the variance of the ensemble-mean North Atlantic Oscillation forecast to match the observed variance of the predictable signal. We then select and use only the ensemble members with a North Atlantic Oscillation sufficiently close to the variance-adjusted ensemble-mean forecast North Atlantic Oscillation. This approach greatly improves decadal predictions of winter climate for Europe and eastern North America. Predictions of Atlantic multidecadal variability are also improved, suggesting that the North Atlantic Oscillation is not driven solely by Atlantic multidecadal variability. Our results highlight the need to understand why the signal-to-noise ratio is too small in current climate models10, and the extent to which correcting this model error would reduce uncertainties in regional climate change projections on timescales beyond a decade.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.