Category: PublicationsRA1

Weakening of the Atlantic Niño variability under global warming

Crespo, L.R., Prigent, A., Keenlyside, N., Koseki, S., Svendsen, L., Richter, I., Sánchez-Gómez, E. 2022: Weakening of the Atlantic Niño variability under global warming. Nat. Clim. Chang. https://doi.org/10.1038/s41558-022-01453-y

Summary: The Atlantic Niño is one of the most important patterns of interannual tropical climate variability, but how climate change will influence this pattern is not well known due to large climate model biases. Here we show that state-of-the-art climate models robustly predict a weakening of Atlantic Niños in response to global warming, mainly due to a decoupling of subsurface and surface temperature variations as the upper equatorial Atlantic Ocean warms. This weakening is predicted by most (>80%) models in the Coupled Model Intercomparison Project Phases 5 and 6 under the highest emission scenarios. Our results indicate a reduction in variability by the end of the century by 14%, and as much as 24–48% when accounting for model errors using a simple emergent constraint analysis. Such a weakening of Atlantic Niño variability will potentially impact climate conditions and the skill of seasonal predictions in many regions.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for near-future climate projection

Omrani, NE., Keenlyside, N., Matthes, K., Boljka, L., Zanchettin, D., Jungclaus, JH., Lubis, SW. 2022: Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for near-future climate projection. npj Clim Atmos Sci. https://doi.org/10.1038/s41612-022-00275-1

Summary: Northern Hemisphere (NH) climate has experienced various coherent wintertime multidecadal climate trends in stratosphere, troposphere, ocean, and cryosphere. However, the overall mechanistic framework linking these trends is not well established. Here we show, using long-term transient forced coupled climate simulation, that large parts of the coherent NH-multidecadal changes can be understood within a damped coupled stratosphere/troposphere/ocean-oscillation framework. Wave-induced downward propagating positive stratosphere/troposphere-coupled Northern Annular Mode (NAM) and associated stratospheric cooling initiate delayed thermohaline strengthening of Atlantic overturning circulation and extratropical Atlantic-gyres. These increase the poleward oceanic heat transport leading to Arctic sea-ice melting, Arctic warming amplification, and large-scale Atlantic warming, which in turn initiates wave-induced downward propagating negative NAM and stratospheric warming and therefore reverse the oscillation phase. This coupled variability improves the performance of statistical models, which project further weakening of North Atlantic Oscillation, North Atlantic cooling and hiatus in wintertime North Atlantic-Arctic sea-ice and global surface temperature just like the 1950s–1970s.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Recent Hadley Circulation Strengthening: A Trend or Multidecadal Variability?

Zaplotnik, Ž., M. Pikovnik, L. Boljka, L. 2022: Recent Hadley Circulation Strengthening: A Trend or Multidecadal Variability? J Clim. https://doi.org/10.1175/JCLI-D-21-0204.1

Summary: This study explores the possible drivers of the recent Hadley circulation strengthening in the modern reanalyses. Predominantly, two recent generations of reanalyses provided by the European Centre for Medium-Range Weather Forecasts are used: the fifth-generation atmospheric reanalysis (ERA5) and the interim reanalysis (ERA-Interim). Some results are also evaluated against other long-term reanalyses. To assess the origins of the Hadley cell (HC) strength variability, we employ the Kuo–Eliassen (KE) equation. ERA5 shows that both HCs were strengthening prior to the 2000s, but they have been weakening or remained steady afterward. Most of the long-term variability in the strength of the HCs is explained by the meridional gradient of diabatic (latent) heating, which is related to precipitation gradients. However, the strengthening of both HCs in ERA5 is larger than the strengthening expected from the observed zonal-mean precipitation gradient [estimated from the Global Precipitation Climatology Project (GPCP)]. This suggests that the HC strength trends in the recent decades in ERA5 can be explained partly as an artifact of the misrepresentation of latent heating and partly through (physical) long-term variability. To show that the latter is true, we analyze ERA5 preliminary data for the 1950–78 period, other long-term (e.g., twentieth century) reanalyses, and sea surface temperature observational data. This reveals that the changes in the HC strength can be a consequence of the Atlantic multidecadal oscillation (AMO) and related diabatic and frictional processes, which in turn drive the global HC variability. This work has implications for further understanding of the long-term variability of the Hadley circulation.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Metrics of the Hadley circulation strength and associated circulation trends

Pikovnik, M., Zaplotnik, Ž., Boljka, L., Žagar, N. 2022: Metrics of the Hadley circulation strength and associated circulation trends. Weather Clim Dynam. https://doi.org/10.5194/wcd-3-625-2022

Summary: This study compares trends in the Hadley cell (HC) strength using different metrics applied to the ECMWF ERA5 and ERA-Interim reanalyses for the period 1979–2018. The HC strength is commonly evaluated by metrics derived from the mass-weighted zonal-mean stream function in isobaric coordinates. Other metrics include the upper tropospheric velocity potential, the vertical velocity in the mid-troposphere, and the water vapour transport in the lower troposphere. Seven known metrics of HC strength are complemented here by a metric of the spatially averaged HC strength, obtained by averaging the stream function in the latitude–pressure (φp) plane, and by the total energy of zonal-mean unbalanced circulation in the normal-mode function decomposition. It is shown that metrics, which rely on single-point values in the φp plane, produce unreliable 40-year trends in both the northern and southern HCs, especially in ERA-Interim; magnitudes and even the signs of the trends depend on the choice of the HC strength metric. The two new metrics alleviate the vertical and meridional inhomogeneities of the trends in HC strength. The unbalanced energy metric suggests a positive HC trend in both reanalyses, whereas the metric based on averaging the stream function finds a significant positive trend only in ERA5.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Spatial patterns, mechanisms and predictability of Barents Sea ice change

Efstathiou, E., Eldevik, T., Årthun, M., Lind, S. 2022: Spatial patterns, mechanisms and predictability of Barents Sea ice change. J Clim. https://doi.org/10.1175/JCLI-D-21-0044.1  .

Summary: Recent Arctic winter sea ice loss has been most pronounced in the Barents Sea. Here we explore the spatial structure of Barents Sea ice change as observed over the last 40 years. The dominant mode of winter sea ice concentration interannual variability corresponds to areal change (explains 43% of spatial variance) and has a center of action in the northeastern Barents Sea where the temperate Atlantic inflow meets the wintertime sea-ice. Sea ice area import and northerly wind also contribute to this “areal-change mode”; the area increases with more ice import and stronger winds from the north. The remaining 57% variance in sea ice, individually and combined, redistributes the sea ice without changing the total area. The two leading redistribution modes are a dipole of increase in sea ice concentration south of Svalbard with decrease southwest of Novaya Zemlya, and a tripole of increase in the central Barents Sea with decrease east of Svalbard and in the southeastern Barents Sea. Redistribution is mainly contributed by anomalous wind and sea ice area import. Basic predictability, i.e., the lagged response to observed drivers, is predominantly associated with the areal-change mode as influenced by temperature of the Atlantic inflow and sea ice import from the Arctic.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Assessing the influence of sea surface temperature and arctic sea ice cover on the uncertainty in the boreal winter future climate projections

Cheung, HN., Keenlyside, N., Koenigk, T., Yang, S., Tian, T., Xu, Z., Gao, Y., Ogawa, F., Omrani, N.-E., Qiao, S., Zhou, W. 2022: Assessing the influence of sea surface temperature and arctic sea ice cover on the uncertainty in the boreal winter future climate projections. Clim. Dyn. https://doi.org/10.1007/s00382-022-06136-0

Summary: We investigate the uncertainty (i.e., inter-model spread) in future projections of the boreal winter climate, based on the forced response of ten models from the CMIP5 following the RCP8.5 scenario. The uncertainty in the forced response of sea level pressure (SLP) is large in the North Pacific, the North Atlantic, and the Arctic. A major part of these uncertainties (31%) is marked by a pattern with a center in the northeastern Pacific and a dipole over the northeastern Atlantic that we label as the Pacific–Atlantic SLP uncertainty pattern (PA∆SLP). The PA∆SLP is associated with distinct global sea surface temperature (SST) and Arctic sea ice cover (SIC) perturbation patterns. To better understand the nature of the PA∆SLP, these SST and SIC perturbation patterns are prescribed in experiments with two atmospheric models (AGCMs): CAM4 and IFS. The AGCM responses suggest that the SST uncertainty contributes to the North Pacific SLP uncertainty in CMIP5 models, through tropical–midlatitude interactions and a forced Rossby wavetrain. The North Atlantic SLP uncertainty in CMIP5 models is better explained by the combined effect of SST and SIC uncertainties, partly related to a Rossby wavetrain from the Pacific and air-sea interaction over the North Atlantic. Major discrepancies between the CMIP5 and AGCM forced responses over northern high-latitudes and continental regions are indicative of uncertainties arising from the AGCMs. We analyze the possible dynamic mechanisms of these responses, and discuss the limitations of this work.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Changes in Arctic Stratification and Mixed Layer Depth Cycle: A Modeling Analysis

Hordoir, R., Skagseth, Ø., Ingvaldsen, R.B., Sandø, A.B., Löptien, U., Dietze, H., Gierisch, A.M.U., Assmann K.A., Lundesgaard,Ø., Lind, S. 2022: Changes in Arctic Stratification and Mixed Layer Depth Cycle: A Modeling Analysis. JGR Oceans. https://doi.org/10.1029/2021JC017270

Summary: We analyzed the results of an ocean model simulation for the Arctic and North Atlantic oceans for the period 1970–2019. Our model is in line with the recent observed changes in the Arctic Ocean and allows, in contrast to the rather sparse observations, a detailed assessment of stratification changes. These changes will affect the Arctic ecosystem and are also believed to affect the large scale ocean circulation. We show that major changes in upper ocean conditions are caused by changes in the fresh water supply by sea ice and varying effect of the wind on regions that are now becoming ice-free. We also study the effect of changes in river runoff into the Arctic Ocean. Our study shows that an increase in river runoff can change the coastal circulation and results, paradoxically, in regions of higher salinity. These results point to the importance of modeling tools when it comes to a better understanding of ocean processes in a changing climate.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Mechanisms of regional winter sea-ice variability in a warming Arctic

Dörr, J., Årthun, M., Eldevik, T., Madonna, E. 2021: Mechanisms of regional winter sea-ice variability in a warming Arctic. Journal of Climate. https://doi.org/10.1175/JCLI-D-21-0149.1 .

Summary: The Arctic winter sea ice cover is in retreat overlaid by large internal variability. Changes to sea ice are driven by exchange of heat, momentum, and freshwater within and between the ocean and the atmosphere. Using a combination of observations and output from the Community Earth System Model Large Ensemble, we analyze and contrast present and future drivers of the regional winter sea ice cover. Consistent with observations and previous studies, we find that for the recent decades ocean heat transport though the Barents Sea and Bering Strait is a major source of sea ice variability in the Atlantic and Pacific sectors of the Arctic, respectively. Future projections show a gradually expanding footprint of Pacific and Atlantic inflows highlighting the importance of future Atlantification and Pacification of the Arctic Ocean. While the dominant hemispheric modes of winter atmospheric circulation are only weakly connected to the sea ice, we find distinct local atmospheric circulation patterns associated with present and future regional sea ice variability in the Atlantic and Pacific sectors, consistent with heat and moisture transport from lower latitudes. Even if the total freshwater input from rivers is projected to increase substantially, its influence on simulated sea ice is small in the context of internal variability.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Understanding the dynamics of recent Norwegian extreme weather events and their influence on energy production

Pecnjak, Martin (2021-08-05). Understanding the dynamics of recent Norwegian extreme weather events and their influence on energy production (Master’s thesis, University of Bergen, Bergen, Norway). https://bora.uib.no/bora-xmlui/handle/11250/2778409 .

Summary: The growing frequency and severity of extreme weather events in the Northern Hemisphere has prompted a lot of research being done on their origin and physical mechanisms. Both simplified and complex approaches have been introduced in defining and understanding these events, where they look into high-amplitude quasi-stationary Rossby waves and their quasi-resonant amplification. However, different approaches exist to investigating extreme events and these were just a motivation for this thesis. Since the resonance method is suit- able mostly for summer events and the events discussed in this thesis have happened in all seasons, a different approach was needed. The events in question were a winter drought, two summer and autumn floods, a winter snowfall and a spring/summer heatwave in the areas of south and southwestern Norway. In order to detect certain features which would help solve this issue, we look into anomalies of different meteorological variables such as geopoten- tial height, surface temperature, precipitation and snowfall rate and zonal and meridional winds. Deep and thorough statistical and dynamical analyses are applied to define the out- comes and the physical origins which would help us obtain a clear picture on the whole case. The finite-amplitude local wave activity (LWA) diagnostic, as a measure of the meandering of the jet stream, has helped to give a clear picture along with the large-scale circulation. This method can be used as a proxy for the strength of the eddy-driven jet and the storm track. It has proven to be the key factor in defining what has exactly caused the events in ques- tion. The results and findings have shown that the LWA is a conclusive tool in determining whether an extreme event was related to a blocking pattern or not, while the LWA budget equation components have shed light on the so far poorly understood dynamical aspects which led to the events. The zonal LWA flux has proven to be a good predictor of blocking with its onset in the early stages of the events, similar to the traffic jam concept introduced by (Nakamura and Huang, 2018). The jet stream has a capacity for the LWA flux similar to how a highway has a capacity for the number of vehicles on it. If the capacity is exceeded, blocking occurs, and this is readily shown in the results and findings of this work. As for the budget equation components, the zonal LWA flux convergence has proven to be the key in maintaining the increase of the LWA as well as also having an early onset in each blocking event in agreement with the LWA flux. On the other hand, the residual in the LWA budget, which represents the non-conservative small-scale processes (diabatic sources and sinks of LWA), dampens the LWA. The LWA method has also proven to be useful in all seasons. The motivation for the thesis also came from the influence of the events on the meteorological variables related to the Norwegian energy production. The results show us clues into possible ways of improving forecasting of such events and minimizing their harmful impacts. They also show possibilities in improving energy management, infrastructure, allocation of resources and preparedness of the society for damages and hazards caused by the events. This was not fully investigated in this thesis and is the next step in the research of this topic.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Variable Nordic Seas Inflow Linked to Shifts in North Atlantic Circulation

Asbjørnsen, H., Johnson, H.L., Årthun, M. 2021: Variable Nordic Seas Inflow Linked to Shifts in North Atlantic Circulation. Journal of Climate. https://doi.org/10.1175/JCLI-D-20-0917.1 .

Summary: The inflow across the Iceland-Scotland Ridge determines the amount of heat supplied to the Nordic Seas from the subpolar North Atlantic (SPNA). Consequently, variable inflow properties and volume transport at the ridge influence marine ecosystems and sea ice extent further north. Here, we identify the upstream pathways of the Nordic Seas inflow, and assess the mechanisms responsible for interannual inflow variability. Using an eddy-permitting ocean model hindcast and a Lagrangian analysis tool, numerical particles are released at the ridge during 1986-2015 and tracked backward in time. We find an inflow that is well-mixed in terms of its properties, where 64% comes from the subtropics and 26% has a subpolar or Arctic origin. The local instantaneous response to the NAO is important for the overall transport of both subtropical and Arctic-origin waters at the ridge. In the years before reaching the ridge, the subtropical particles are influenced by atmospheric circulation anomalies in the gyre boundary region and over the SPNA, forcing shifts in the North Atlantic Current (NAC) and the subpolar front. An equatorward shifted NAC and westward shifted subpolar front correspond to a warmer, more saline inflow. Atmospheric circulation anomalies over the SPNA also affect the amount of Arctic-origin water re-routed from the Labrador Current toward the Nordic Seas. A high transport of Arctic-origin water is associated with a colder, fresher inflow across the Iceland-Scotland Ridge. The results thus demonstrate the importance of gyre dynamics and wind forcing in affecting the Nordic Seas inflow properties and volume transport.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.