Tag: smedsrud

The Arctic Mediterranean In Interacting Climates of Ocean Basins Observations, Mechanisms, Predictability, and Impacts

Eldevik, T., Smedsrud, L.H., Li, C., Årthun, M., Madonna, E., Svendsen, L. 2020: The Arctic Mediterranean. In: Mechoso (Ed.). Interacting Climates of Ocean Basins Observations, Mechanisms, Predictability, and Impacts. Cambridge University Press, 2020, 186-215 . https://doi.org/10.1017/9781108610995.007 .
Summary: The Arctic Mediterranean sits on the “top of the world” and connects the Atlantic and Pacific climate realms via the cold Arctic. It is the combined basin of the Nordic Seas (the Norwegian, Iceland, and Greenland seas) and the Arctic Ocean confined by the Arctic land masses – thus making it a Mediterranean ocean (Figure 6.1; e.g., Aagaard et al., 1985). The Arctic Mediterranean is small for a World Ocean but its heat loss and freshwater uptake is disproportionally large (e.g., Ganachaud and Wunsch, 2000; Eldevik and Nilsen, 2013; Haine et al., 2015). With the combined presence of the Gulf Stream’s northern limb, regional freshwater stratification, and a retreating sea-ice cover, it is likely where water mass contrasts, shifting air-ocean-ice interaction, and climate change are most pronounced in the present world oceans (Stocker et al., 2013; Vihma, 2014).

You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Reduced efficiency of the Barents Sea cooling machine

Skagseth, Ø., Eldevik, T., Årthun, M., Asbjørnsen, H., Lien, V.S., Smedsrud, L.H. 2020: Reduced efficiency of the Barents Sea cooling machine. Nature Climate Change. https://doi.org/10.1038/s41558-020-0772-6

Summary: Dense water masses from the Barents Sea are an important part of the Arctic thermohaline system. Here, using hydrographic observations from 1971 to 2018, we show that the Barents Sea climate system has reached a point where ‘the Barents Sea cooling machine’—warmer Atlantic inflow, less sea ice, more regional ocean heat loss—has changed towards less-efficient cooling. Present change is dominated by reduced ocean heat loss over the southern Barents Sea as a result of anomalous southerly winds. The outflows have accordingly become warmer. Outflow densities have nevertheless remained relatively unperturbed as increasing salinity appears to have compensated the warming inflow. However, as the upstream Atlantic Water is now observed to freshen while still relatively warm, we speculate that the Barents Sea within a few years may export water masses of record-low density to the adjacent basins and deep ocean circulation.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Reduced efficiency of the Barents Sea cooling machine

Skagseth, Ø., Eldevik, T., Årthun, M., Asbjørnsen, H., Lien, VS., Smedsrud, LH. 2020: Decreasing efficiency of the Barents Sea cooling machine. Nature Climate Change. https://doi.org/10.1038/s41558-020-0772-6 .

Summary: Dense water masses from the Barents Sea are an important part of the Arctic thermohaline system. Here, using hydrographic observations from 1971 to 2018, we show that the Barents Sea climate system has reached a point where ‘the Barents Sea cooling machine’—warmer Atlantic inflow, less sea ice, more regional ocean heat loss—has changed towards less-efficient cooling. Present change is dominated by reduced ocean heat loss over the southern Barents Sea as a result of anomalous southerly winds. The outflows have accordingly become warmer. Outflow densities have nevertheless remained relatively unperturbed as increasing salinity appears to have compensated the warming inflow. However, as the upstream Atlantic Water is now observed to freshen while still relatively warm, we speculate that the Barents Sea within a few years may export water masses of record-low density to the adjacent basins and deep ocean circulation.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Impact of ocean and sea ice initialisation on seasonal prediction skill in the Arctic

Kimmritz, M., F. Counillon, L. H. Smedsrud, I. Bethke, N. Keenlyside, F. Ogawa, and Y. Wang:. 2019: Impact of ocean and sea ice initialisation on seasonal prediction skill in the Arctic. JAMES https://doi.org/10.1029/2019MS001825 .

Summary:The declining Arctic sea ice entails both risks and opportunities for the Arctic ecosystem, communities, and economic activities. Reliable seasonal predictions of the Arctic sea ice could help to guide decisionmakers to benefit from arising opportunities and to mitigate increased risks in the Arctic. However, despite some success, seasonal prediction systems in the Arctic have not exploited their full potential yet. For instance, so far only a single model component, for example, the ocean, has been updated in isolation to derive a skillful initial state, though joint updates across model components, for example, the ocean and the sea ice, are expected to perform better. Here, we introduce a system that, for the first time, deploys joint updates of the ocean and the sea ice state, using data of the ocean hydrography and sea ice concentration, for seasonal prediction in the Arctic. By comparing this setup with a system that updates only the ocean in isolation, we assess the added skill of facilitating sea ice concentration data to jointly update the ocean and the sea ice. While the update of the ocean alone leads to skillful winter predictions only in the North Atlantic, the joint update strongly enhances the overall skill.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.