Climate Futures: New Centre for Research-based Innovation

Press release from NORCE (in Norwegian)

The Norwegian Research Council has given Climate Futures the prestigious status as a Centre for Research-based Innovation (SFI).

Climate Futures is a new and ambitious action to generate long-term cooperation between companies, public organizations and research groups across sectors and disciplines to tackle one of the most urgent challenges of our time.

The changing nature of weather and climate poses a severe threat to the prosperity and well-being of our economy and society as a whole, but climate risk is inadequately managed due to knowledge gaps and deficiencies in the decision-making processes of businesses and public authorities.

– These are fantastic news. We knew that the theme of Climate Futures was relevant, and we are pleased that the Research Council also sees that climate risk is an area that requires great effort on the research front. We at NORCE and the Bjerknes Centre have a brilliant group of research partners, business world stakeholders and public sector partners. We are now looking forward to helping these deal with the great risk associated with weather and climate, whether for direct phenomena such as floods and droughts, or more transferred risk related to investments in other parts of the world, says centre manager and climate scientist Erik Kolstad in NORCE and the Bjerknes Centre.

Climate Futures is led by NORCE, and is comprised of seven other research partners and close to 30 stakeholder partners, representing agriculture, renewable energy, disaster mitigation, shipping, insurance, finance, risk management, and the public sector.

They will work together to create new solutions to predict and manage climate risk from 10 days to 10 years into the future.

Contact
Erik Kolstad, centre leader Climate Futures, NORCE and the Bjerknes Centre. +47 411 22 457
Trond Martin Dokken, Executive Vice President climate, NORCE   +47 975 64 402

Research partners in Climate Futures
NHH / SNF, Universitetet i Bergen, Norsk regnesentral, Meteorologisk institutt og Nansensenteret.
NORCE, UiB og Nansensenteret er alle samarbeidspartnere i Bjerknessenteret for klimaforskning.

Stakeholder partners
BKK, Golden Ocean, Gartnerhallen, Graminor, MOWI, StormGeo, Agder Energi, Tryg Forsikring, Norges Bondelag, Western Bulk, KLP, G2 Ocean, Safetec, Statkraft, Norsk Landbrukrådgiving, Vestland Fylkeskommune, Viken Fylkeskommune, Rogaland Fylkeskommune, Alle fylkesmennene i Norge, representert ved Fylkesmannen i Vestland og Direktoratet for Samfunnssikkerhet og Beredskap (DSB).

Amplification of synoptic to annual variability of West African summer monsoon rainfall under global warming

Akinsanola, A. A., W. Zhou, T. Zhou, N. Keenlyside, 2020: Amplification of synoptic to annual variability of West African summer monsoon rainfall under global warming. npj Clim Atmos Sci. https://doi.org/10.1038/s41612-020-0125-1 .

Summary: Increased knowledge of future changes in rainfall variability is needed to reduce vulnerability to potential impacts of global warming, especially in highly vulnerable regions like West Africa. While changes in mean and extreme rainfall have been studied extensively, rainfall variability has received less attention, despite its importance. In this study, future changes in West African summer monsoon (WASM) rainfall variability were investigated using data from two regional climate models that participated in the Coordinated Regional Climate Downscaling Experiment (CORDEX). The daily rainfall data were band-pass filtered to isolate variability at a wide range of timescales. Under global warming, WASM rainfall variability is projected to increase by about 10–28% over the entire region and is remarkably robust over a wide range of timescales. We found that changes in mean rainfall significantly explain the majority of intermodel spread in projected WASM rainfall variability. The role of increased atmospheric moisture is examined by estimating the change due to an idealized local thermodynamic enhancement. Analysis reveals that increased atmospheric moisture with respect to warming following the Clausius–Clapeyron relationship can explain the majority of the projected changes in rainfall variability at all timescales.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Reduced efficiency of the Barents Sea cooling machine

Skagseth, Ø., Eldevik, T., Årthun, M., Asbjørnsen, H., Lien, V. S., Smedsrud, LH. 2020: Reduced efficiency of the Barents Sea cooling machine. Nature Climate Change. https://doi.org/10.1038/s41558-020-0772-6 .

Summary: Dense water masses from the Barents Sea are an important part of the Arctic thermohaline system. Here, using hydrographic observations from 1971 to 2018, we show that the Barents Sea climate system has reached a point where ‘the Barents Sea cooling machine’—warmer Atlantic inflow, less sea ice, more regional ocean heat loss—has changed towards less-efficient cooling. Present change is dominated by reduced ocean heat loss over the southern Barents Sea as a result of anomalous southerly winds. The outflows have accordingly become warmer. Outflow densities have nevertheless remained relatively unperturbed as increasing salinity appears to have compensated the warming inflow. However, as the upstream Atlantic Water is now observed to freshen while still relatively warm, we speculate that the Barents Sea within a few years may export water masses of record-low density to the adjacent basins and deep ocean circulation.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Evaluating Impacts of Recent Arctic Sea Ice Loss on the Northern Hemisphere Winter Climate Change

Ogawa, F., N. Keenlyside, Y. Gao, T. Koenigk, S. Yang, L. Suo, T. Wang, G. Gastineau, T. Nakamura, N. Cheung Ho, N. E. Omrani, J. Ukita, and V. Semenov, 2018: Evaluating Impacts of Recent Arctic Sea Ice Loss on the Northern Hemisphere Winter Climate Change. Geophysical Research Letters, 45, 3255-3263.

DOI: https://doi.org/10.1002/2017GL076502

Read more