Category: PublicationsRA2

Climate and marine-ecosystem intelligence for a green and competitive Nordic region (policy brief)

Keenlyside, N., Ogilvie A., Yang, S. Koening, T., Counilon F. 2023: Climate and marine-ecosystem intelligence for a green and competitive Nordic region. Nordic Region Fast Track to Vision 2030, NordForsk Policy Brief. https://norden.diva-portal.org/smash/get/diva2:1789341/FULLTEXT03

Summary: Operational climate and marine ecosystem services are urgently needed at the Nordic level. These services are crucial for combating the climate and marine ecosystem emergencies currently threatening the region. They are also needed to manage climate risks and to increase resilience in transport, construction, and food sectors, as well as to develop a renewable energy sector to achieve carbon neutrality. They are important for managing human activities to ensure a healthy marine ecosystem and sustainable fisheries.
We identify two priorities for developing climate and marine-ecosystem services that capitalise on world-leading Nordic research. First, fully integrated climate and marine ecosystems models need to be developed to predict changes on seasonal-to-decadal timescales. Second, services need to be co-developed with a fundamental understanding of societal needs. This requires trans-disciplinary collaboration among climate and ecosystem
researchers, computational scientists, and social scientists, with the active participation of all users.
Cooperation is needed at the Nordic level to address the common challenges that we face. Combining expertise and infrastructure will have major synergistic benefits. The shared cultural and societal values will facilitate the co-development of solutions to achieve a green and more competitive Nordic Region.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Enhancing Seasonal Forecast Skills by Optimally Weighting the Ensemble from Fresh Data

Brajard, J., Counillon, F., Wang, Y., Kimmritz, M. 2023: Enhancing Seasonal Forecast Skills by Optimally Weighting the Ensemble from Fresh Data. Weather and Forecasting. https://doi.org/10.1175/WAF-D-22-0166.1

Summary: Dynamical climate predictions are produced by assimilating observations and running ensemble simulations of Earth system models. This process is time consuming and by the time the forecast is delivered, new observations are already available, making it obsolete from the release date. Moreover, producing such predictions is computationally demanding, and their production frequency is restricted. We tested the potential of a computationally cheap weighting average technique that can continuously adjust such probabilistic forecasts—in between production intervals—using newly available data. The method estimates local positive weights computed with a Bayesian framework, favoring members closer to observations. We tested the approach with the Norwegian Climate Prediction Model (NorCPM), which assimilates monthly sea surface temperature (SST) and hydrographic profiles with the ensemble Kalman filter. By the time the NorCPM forecast is delivered operationally, a week of unused SST data are available. We demonstrate the benefit of our weighting method on retrospective hindcasts. The weighting method greatly enhanced the NorCPM hindcast skill compared to the standard equal weight approach up to a 2-month lead time (global correlation of 0.71 vs 0.55 at a 1-month lead time and 0.51 vs 0.45 at a 2-month lead time). The skill at a 1-month lead time is comparable to the accuracy of the EnKF analysis. We also show that weights determined using SST data can be used to improve the skill of other quantities, such as the sea ice extent. Our approach can provide a continuous forecast between the intermittent forecast production cycle and be extended to other independent datasets.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

On dynamical downscaling of ENSO-induced oceanic anomalies off Baja California Peninsula, Mexico: role of the air-sea heat flux

Rivas, D., Counillon, F., Keenlyside, N. 2023: On dynamical downscaling of ENSO-induced oceanic anomalies off Baja California Peninsula, Mexico: role of the air-sea heat flux. Front Mar Sci. https://doi.org/10.3389/fmars.2023.1179649

Summary: The El Niño Southern Oscillation (ENSO) phenomenon is responsible for important physical and biogeochemical anomalies in the Northeastern Pacific Ocean. The event of 1997-98 has been one of the most intense in the last decades and it had large implications for the waters off Baja California (BC) Peninsula with a pronounced warm sea surface temperature (SST) anomaly adjacent to the coast. Downscaling of reanalysis products was carried out using a mesoscale-resolving numerical ocean model to reproduce the regional SST anomalies. The nested model has a 9 km horizontal resolution that extend from Cabo Corrientes to Point Conception. A downscaling experiment that computes surface fluxes online with bulk formulae achieves a better representation of the event than a version with prescribed surface fluxes. The nested system improves the representation of the large scale warming and the localized SST anomaly adjacent to BC Peninsula compared to the reanalysis product. A sensitivity analysis shows that air temperature and to a lesser extent wind stress anomalies are the primary drivers of the formation of BC temperature anomaly. The warm air-temperature anomalies advect from the near-equatorial regions and the central north Pacific and is associated with sea-level pressure anomalies in the synoptic-scale atmospheric circulation. This regional warm pool has a pronounced signature on sea level anomaly in agreement with observations, which may have implications for biogeochemistry.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Forecasting harmful algae blooms: Application to Dinophysis acuminata in northern Norway

Silva, E., Counillon, F., Brajard, J., Pettersson, L.H., Naustvoll, L. 2023: Forecasting harmful algae blooms: Application to Dinophysis acuminata in northern Norway.  Harmful Algae. https://doi.org/10.1016/j.hal.2023.102442

Summary: Dinophysis acuminata produces Diarrhetic Shellfish Toxins (DST) that contaminate natural and farmed shellfish, leading to public health risks and economically impacting mussel farms. For this reason, there is a high interest in understanding and predicting D. acuminata blooms. This study assesses the environmental conditions and develops a sub-seasonal (7 – 28 days) forecast model to predict D. acuminata cells abundance in the Lyngen fjord located in northern Norway. A Support Vector Machine (SVM) model is trained to predict future D. acuminata cells abundance by using the past cell concentration, sea surface temperature (SST), Photosynthetic Active Radiation (PAR), and wind speed. Cells concentration of Dinophysis spp. are measured in-situ from 2006 to 2019, and SST, PAR, and surface wind speed are obtained by satellite remote sensing. D. acuminata only explains 40% of DST variability from 2006 to 2011, but it changes to 65% after 2011 when D. acuta prevalence reduced. The D. acuminata blooms can reach concentration up to 3954 cells l−1 and are restricted to the summer during warmer waters, varying from 7.8 to 12.7 °C. The forecast model predicts with fair accuracy the seasonal development of the blooms and the blooms amplitude, showing a coefficient of determination varying from 0.46 to 0.55. SST has been found to be a useful predictor for the seasonal development of the blooms, while the past cells abundance is needed for updating the current status and adjusting the blooms timing and amplitude. The calibrated model should be tested operationally in the future to provide an early warning of D. acuminata blooms in the Lyngen fjord. The approach can be generalized to other regions by recalibrating the model with local observations of D. acuminata blooms and remote sensing data.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Framework for an Ocean-Connected Supermodel of the Earth System

Counillon, F., Keenlyside, N., Wang, S., Devilliers, M., Gupta, A., Koseki, S., Shen, M.-L. 2023: Framework for an Ocean-Connected Supermodel of the Earth System. JAMES. https://doi.org/10.1029/2022MS003310

Summary: Observed and future winter Arctic sea ice loss is strongest in the Barents Sea. However, the anthropogenic signal of the sea ice decline is superimposed by pronounced internal variability that represents a large source of uncertainty in future climate projections. A notable manifestation of internal variability is rapid ice change events (RICEs) that greatly exceed the anthropogenic trend. These RICEs are associated with large displacements of the sea ice edge which could potentially have both local and remote impacts on the climate system. In this study we present the first investigation of the frequency and drivers of RICEs in the future Barents Sea, using multi-member ensemble simulations from CMIP5 and CMIP6. A majority of RICEs are triggered by trends in ocean heat transport or surface heat fluxes. Ice loss events are associated with increasing trends in ocean heat transport and decreasing trends in surface heat loss. RICEs are a common feature of the future Barents Sea until the region becomes close to ice-free. As their evolution over time is closely tied to the average sea ice conditions, rapid ice changes in the Barents Sea may serve as a precursor for future changes in adjacent seas.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Benefit of vertical localization for sea surface temperature assimilation in isopycnal coordinate model

Wang, Y., Counillon, F., Barthélémy, S., Barth, A. 2022: Benefit of vertical localization for sea surface temperature assimilation in isopycnal coordinate model. Front Clim. https://doi.org/10.3389/fclim.2022.918572

Summary: Sea surface temperature (SST) observations are a critical data set for long-term climate reconstruction. However, their assimilation with an ensemble-based data assimilation method can degrade performance in the ocean interior due to spurious covariances. Assimilation in isopycnal coordinates can delay the degradation, but it remains problematic for long reanalysis. We introduce vertical localization for SST assimilation in the isopycnal coordinate. The tapering functions are formulated empirically from a large pre-industrial ensemble. We propose three schemes: 1) a step function with a small localization radius that updates layers from the surface down to the first layer for which insignificant correlation with SST is found, 2) a step function with a large localization radius that updates layers down to the last layer for which significant correlation with SST is found, and 3) a flattop smooth tapering function. These tapering functions vary spatially and with the calendar month and are applied to isopycnal temperature and salinity. The impact of vertical localization on reanalysis performance is tested in identical twin experiments within the Norwegian Climate Prediction Model (NorCPM) with SST assimilation over the period 1980–2010. The SST assimilation without vertical localization greatly enhances performance in the whole water column but introduces a weak degradation at intermediate depths (e.g., 2,000–4,000 m). Vertical localization greatly reduces the degradation and improves the overall accuracy of the reanalysis, in particular in the North Pacific and the North Atlantic. A weak degradation remains in some regions below 2,000 m in the Southern Ocean. Among the three schemes, scheme 2) outperforms schemes 1) and 3) for temperature and salinity.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Super-resolution data assimilation

Barthélémy, S., Brajard, J., Bertino, L., Counillon, F. 2022: Super-resolution data assimilation. Ocean Dyn. https://doi.org/10.1007/s10236-022-01523-x

Summary: Increasing model resolution can improve the performance of a data assimilation system because it reduces model error, the system can more optimally use high-resolution observations, and with an ensemble data assimilation method the forecast error covariances are improved. However, increasing the resolution scales with a cubical increase of the computational costs. A method that can more effectively improve performance is introduced here. The novel approach called “Super-resolution data assimilation” (SRDA) is inspired from super-resolution image processing techniques and brought to the data assimilation context. Starting from a low-resolution forecast, a neural network (NN) emulates the fields to high-resolution, assimilates high-resolution observations, and scales it back up to the original resolution for running the next model step. The SRDA is tested with a quasi-geostrophic model in an idealized twin experiment for configurations where the model resolution is twice and four times lower than the reference solution from which pseudo-observations are extracted. The assimilation is performed with an Ensemble Kalman Filter. We show that SRDA outperforms both the low-resolution data assimilation approach and a version of SRDA with cubic spline interpolation instead of NN. The NN’s ability to anticipate the systematic differences between low- and high-resolution model dynamics explains the enhanced performance, in particular by correcting the difference of propagation speed of eddies. With a 25-member ensemble at low resolution, the SRDA computational overhead is 55 percent and the errors reduce by 40 percent, making the performance very close to that of the high-resolution system (52 percent of error reduction) that increases the cost by 800 percent. The reliability of the ensemble system is not degraded by SRDA.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Impact of initialization methods on the predictive skill in NorCPM: an Arctic–Atlantic case study

Passos, L., Langehaug, HR., Årthun, M., Eldevik, T., Bethke, I., Kimmritz, M. 2022: Impact of initialization methods on the predictive skill in NorCPM: an Arctic–Atlantic case study. Clim Dyn. https://doi.org/10.1007/s00382-022-06437-4

Summary: The skilful prediction of climatic conditions on a forecast horizon of months to decades into the future remains a main scientific challenge of large societal benefit. Here we assess the hindcast skill of the Norwegian Climate Prediction Model (NorCPM) for sea surface temperature (SST) and sea surface salinity (SSS) in the Arctic–Atlantic region focusing on the impact of different initialization methods. We find the skill to be distinctly larger for the Subpolar North Atlantic than for the Norwegian Sea, and generally for all lead years analyzed. For the Subpolar North Atlantic, there is furthermore consistent benefit in increasing the amount of data assimilated, and also in updating the sea ice based on SST with strongly coupled data assimilation. The predictive skill is furthermore significant for at least two model versions up to 8–10 lead years with the exception for SSS at the longer lead years. For the Norwegian Sea, significant predictive skill is more rare; there is relatively higher skill with respect to SSS than for SST. A systematic benefit from more complex data assimilation approach can not be identified for this region. Somewhat surprisingly, skill deteriorates quite consistently for both the Subpolar North Atlantic and the Norwegian Sea when going from CMIP5 to corresponding CMIP6 versions. We find this to relate to change in the regional performance of the underlying physical model that dominates the benefit from initialization.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Editorial: Past Reconstruction of the Physical and Biogeochemical Ocean State

Masina, S., Counillon, F., Grégoire, M., Storto, A., Tsujino, H. 2022: Editorial: Past Reconstruction of the Physical and Biogeochemical Ocean State. Front Earth Sci. https://doi.org/10.3389/feart.2022.890370

Summary: Knowledge of the ocean’s physical, biogeochemical and ecosystem state and variability is crucial for understanding the evolution of our climate system and better predicting its future. However, the sparseness and inhomogeneous distribution of observations hinder the creation of sound 4-dimensional reconstructions of the past (for an overview of ocean observing systems see the Research Topic Oceanobs’19: An Ocean of Opportunity). Instead, we must rely on a combination of ocean modeling and data analysis to infer past changes. Over the last decade the quality of ocean reanalyses has improved mainly thanks to advances in data assimilation methods and more quality-controlled observation data sets. Reanalyses provide the best-possible state estimate by assimilating observations into a dynamical model (Balmaseda et al., 2015; Masina and Storto, 2017; Storto et al., 2019). In addition, advanced statistical mapping methods (e.g., objective or variational analysis) provide observation-based gridded fields whose resolution depends on the amount of available data (among many Cheng et al., 2017, Ishii et al., 2017; Boyer et al., 2018). For many variables, particularly biogeochemical, the lack of observations more strongly limits the spatial and temporal resolution of these gridded products (Fennel et al., 2019).

The Research Topic gathers contributions aiming at reconstructing the past physical, sea ice and biogeochemical state of the ocean using models in combination with data. Ocean reanalyses and observation-mapping are proposed to further our knowledge, to demonstrate their use in supporting various applications, and to increase confidence in these reconstructions within the scientific community. The products and applications described in this topic provide a foundation for their use in ecosystem-based management, policy advice to support mitigation and adaptation strategies, and in the identification of pathways towards a sustainable ocean.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.