Tag: carrassi

Training a supermodel with noisy and sparse observations: a case study with CPT and the synch rule on SPEEDO – v.1

Schevenhoven, F., Carrassi, A. 2022: Training a supermodel with noisy and sparse observations: a case study with CPT and the synch rule on SPEEDO – v.1. Geosci. Model Dev. https://doi.org/10.5194/gmd-15-3831-2022

Summary: As an alternative to using the standard multi-model ensemble (MME) approach to combine the output of different models to improve prediction skill, models can also be combined dynamically to form a so-called supermodel. The supermodel approach enables a quicker correction of the model errors. In this study we connect different versions of SPEEDO, a global atmosphere-ocean-land model of intermediate complexity, into a supermodel. We focus on a weighted supermodel, in which the supermodel state is a weighted superposition of different imperfect model states. The estimation, “the training”, of the optimal weights of this combination is a critical aspect in the construction of a supermodel. In our previous works two algorithms were developed: (i) cross pollination in time (CPT)-based technique and (ii) a synchronization-based learning rule (synch rule). Those algorithms have so far been applied under the assumption of complete and noise-free observations. Here we go beyond and consider the more realistic case of noisy data that do not cover the full system’s state and are not taken at each model’s computational time step. We revise the training methods to cope with this observational scenario, while still being able to estimate accurate weights. In the synch rule an additional term is introduced to maintain physical balances, while in CPT nudging terms are added to let the models stay closer to the observations during training. Furthermore, we propose a novel formulation of the CPT method allowing the weights to be negative. This makes it possible for CPT to deal with cases in which the individual model biases have the same sign, a situation that hampers constructing a skillfully weighted supermodel based on positive weights. With these developments, both CPT and the synch rule have been made suitable to train a supermodel consisting of state of the art weather and climate models.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model.

Brajard, J., Carrassi, A., Bocquet, M., Bertino, L. 2020: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model. Geoscientific Model Development. https://doi.org/10.1016/j.jocs.2020.101171 .

Summary: A novel method, based on the combination of data assimilation and machine learning is introduced. The new hybrid approach is designed for a two-fold scope: (i) emulating hidden, possibly chaotic, dynamics and (ii) predicting their future states. The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network. Data assimilation is used to optimally combine a surrogate model with sparse noisy data. The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model. The two steps are then repeated iteratively. Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach. The surrogate model shows short-term forecast skill up to two Lyapunov times, the retrieval of positive Lyapunov exponents as well as the more energetic frequencies of the power density spectrum. The sensitivity of the method to critical setup parameters is also presented: the forecast skill decreases smoothly with increased observational noise but drops abruptly if less than half of the model domain is observed. The successful synergy between data assimilation and machine learning, proven here with a low-dimensional system, encourages further investigation of such hybrids with more sophisticated dynamics.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

On Temporal Scale Separation in Coupled Data Assimilation with the Ensemble Kalman Filter

Tondeur, M., Carrassi, A., Vannitsem, S., Bocquet, M. 2020: On Temporal Scale Separation in Coupled Data Assimilation with the Ensemble Kalman Filter. J Stat Phys 179, 1161–1185. https://doi.org/10.1007/s10955-020-02525-z .

Summary: Data assimilation for systems possessing many scales of motions is a substantial methodological and technological challenge. Systems with these features are found in many areas of computational physics and are becoming common thanks to increased computational power allowing to resolve finer scales and to couple together several sub-components. Coupled data assimilation (CDA) distinctively appears as a main concern in numerical weather and climate prediction with major efforts put forward by meteo services worldwide. The core issue is the scale separation acting as a barrier that hampers the propagation of the information across model components (e.g. ocean and atmosphere). We provide a brief survey of CDA, and then focus on CDA using the ensemble Kalman filter (EnKF), a widely used Monte Carlo Gaussian method. Our goal is to elucidate the mechanisms behind information propagation across model components. We consider first a coupled system of equations with temporal scale difference, and deduce that: (i) cross components effects are strong from the slow to the fast scale, but, (ii) intra-component effects are much stronger in the fast scale. While observing the slow scale is desirable and benefits the fast, the latter must be observed with high frequency otherwise the error will grow up to affect the slow scale. Numerical experiments are performed using the atmosphere-ocean model, MAOOAM. Six configurations are considered, differing for the strength of the atmosphere-ocean coupling and/or the number of model modes. The performance of the EnKF depends on the model configuration, i.e. on its dynamical features. A comprehensive dynamical characterisation of the model configurations is provided by examining the Lyapunov spectrum, Kolmogorov entropy and Kaplan–Yorke attractor dimension. We also compute the covariant Lyapunov vectors and use them to explain how model instabilities act on different model’s modes according to the coupling strength. The experiments confirm the importance of observing the fast scale, but show also that, despite its slow temporal scale, frequent observations in the ocean are beneficial. The relation between the ensemble size, N, and the unstable subspace dimension, n0, has been studied. Results largely ratify what known for uncoupled system: the condition N≥n0 is necessary for the EnKF to work satisfactorily. Nevertheless the quasi-degeneracy of the Lyapunov spectrum of MAOOAM, with many near-zero exponents, is potentially the cause of the smooth gradual reduction of the analysis error observed for some model configurations, even when N>n0. Future prospects for the EnKF in the context of coupled ocean-atmosphere systems are finally discussed.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.