Category: Publications2022

Publications that published in 2022

Editorial: Past Reconstruction of the Physical and Biogeochemical Ocean State

Masina, S., Counillon, F., Grégoire, M., Storto, A., Tsujino, H. 2022: Editorial: Past Reconstruction of the Physical and Biogeochemical Ocean State. Front Earth Sci. https://doi.org/10.3389/feart.2022.890370

Summary: Knowledge of the ocean’s physical, biogeochemical and ecosystem state and variability is crucial for understanding the evolution of our climate system and better predicting its future. However, the sparseness and inhomogeneous distribution of observations hinder the creation of sound 4-dimensional reconstructions of the past (for an overview of ocean observing systems see the Research Topic Oceanobs’19: An Ocean of Opportunity). Instead, we must rely on a combination of ocean modeling and data analysis to infer past changes. Over the last decade the quality of ocean reanalyses has improved mainly thanks to advances in data assimilation methods and more quality-controlled observation data sets. Reanalyses provide the best-possible state estimate by assimilating observations into a dynamical model (Balmaseda et al., 2015; Masina and Storto, 2017; Storto et al., 2019). In addition, advanced statistical mapping methods (e.g., objective or variational analysis) provide observation-based gridded fields whose resolution depends on the amount of available data (among many Cheng et al., 2017, Ishii et al., 2017; Boyer et al., 2018). For many variables, particularly biogeochemical, the lack of observations more strongly limits the spatial and temporal resolution of these gridded products (Fennel et al., 2019).

The Research Topic gathers contributions aiming at reconstructing the past physical, sea ice and biogeochemical state of the ocean using models in combination with data. Ocean reanalyses and observation-mapping are proposed to further our knowledge, to demonstrate their use in supporting various applications, and to increase confidence in these reconstructions within the scientific community. The products and applications described in this topic provide a foundation for their use in ecosystem-based management, policy advice to support mitigation and adaptation strategies, and in the identification of pathways towards a sustainable ocean.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Skilful decadal-scale prediction of fish habitat and distribution shifts

Payne, M.R., Danabasoglu, G., Keenlyside, N., Matei, D., Miesner, A.K., Yang, S., Yeager, S.G. 2022: Skilful decadal-scale prediction of fish habitat and distribution shifts. Nat. Commun. https://doi.org/10.1038/s41467-022-30280-0

Summary: Many fish and marine organisms are responding to our planet’s changing climate by shifting their distribution. Such shifts can drive international conflicts and are highly problematic for the communities and businesses that depend on these living marine resources. Advances in climate prediction mean that in some regions the drivers of these shifts can be forecast up to a decade ahead, although forecasts of distribution shifts on this critical time-scale, while highly sought after by stakeholders, have yet to materialise. Here, we demonstrate the application of decadal-scale climate predictions to the habitat and distribution of marine fish species. We show statistically significant forecast skill of individual years that outperform baseline forecasts 3–10 years ahead; forecasts of multi-year averages perform even better, yielding correlation coefficients in excess of 0.90 in some cases. We also demonstrate that the habitat shifts underlying conflicts over Atlantic mackerel fishing rights could have been foreseen. Our results show that climate predictions can provide information of direct relevance to stakeholders on the decadal-scale. This tool will be critical in foreseeing, adapting to and coping with the challenges of a changing future climate, particularly in the most ocean-dependent nations and communities.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Training a supermodel with noisy and sparse observations: a case study with CPT and the synch rule on SPEEDO – v.1

Schevenhoven, F., Carrassi, A. 2022: Training a supermodel with noisy and sparse observations: a case study with CPT and the synch rule on SPEEDO – v.1. Geosci. Model Dev. https://doi.org/10.5194/gmd-15-3831-2022

Summary: As an alternative to using the standard multi-model ensemble (MME) approach to combine the output of different models to improve prediction skill, models can also be combined dynamically to form a so-called supermodel. The supermodel approach enables a quicker correction of the model errors. In this study we connect different versions of SPEEDO, a global atmosphere-ocean-land model of intermediate complexity, into a supermodel. We focus on a weighted supermodel, in which the supermodel state is a weighted superposition of different imperfect model states. The estimation, “the training”, of the optimal weights of this combination is a critical aspect in the construction of a supermodel. In our previous works two algorithms were developed: (i) cross pollination in time (CPT)-based technique and (ii) a synchronization-based learning rule (synch rule). Those algorithms have so far been applied under the assumption of complete and noise-free observations. Here we go beyond and consider the more realistic case of noisy data that do not cover the full system’s state and are not taken at each model’s computational time step. We revise the training methods to cope with this observational scenario, while still being able to estimate accurate weights. In the synch rule an additional term is introduced to maintain physical balances, while in CPT nudging terms are added to let the models stay closer to the observations during training. Furthermore, we propose a novel formulation of the CPT method allowing the weights to be negative. This makes it possible for CPT to deal with cases in which the individual model biases have the same sign, a situation that hampers constructing a skillfully weighted supermodel based on positive weights. With these developments, both CPT and the synch rule have been made suitable to train a supermodel consisting of state of the art weather and climate models.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

WMO Global Annual to Decadal Climate Update: A Prediction for 2021–25

Hermanson, L., Smith, D., Seabrook, M., Bilbao, R., Doblas-Reyes, F., Tourigny, E., Lapin, V., Kharin, V.V., Merryfield, W.J., Sospedra-Alfonso, R., Athanasiadis, P., Nicoli, D., Gualdi, S., Dunstone, N., Eade, R., Scaife, A., Collier, M., O’Kane, T., Kitsios, V., Sandery, P., Pankatz, K., Früh, B., Pohlmann, H., Müller, W., Kataoka, T., Tatebe, H., Ishii M., Imada, Y., Kruschke, T., Koenigk, T., Pasha Karami, M., Yang, S., Tian, T., Zhang, L., Delworth, T., Yang, X., Zeng, F., Wang, Y., Counillon, F., Keenlyside, N.S., Bethke, I., Lean, J., Luterbacher, J., Kumar Kolli, R., Kumar, A. 2022: WMO Global Annual to Decadal Climate Update: A Prediction for 2021–25. BAMS https://doi.org/10.1175/BAMS-D-20-0311.1 .

Summary: As climate change accelerates, societies and climate-sensitive socioeconomic sectors cannot continue to rely on the past as a guide to possible future climate hazards. Operational decadal predictions offer the potential to inform current adaptation and increase resilience by filling the important gap between seasonal forecasts and climate projections. The World Meteorological Organization (WMO) has recognized this and in 2017 established the WMO Lead Centre for Annual to Decadal Climate Predictions (shortened to “Lead Centre” below), which annually provides a large multimodel ensemble of predictions covering the next 5 years. This international collaboration produces a prediction that is more skillful and useful than any single center can achieve. One of the main outputs of the Lead Centre is the Global Annual to Decadal Climate Update (GADCU), a consensus forecast based on these predictions. This update includes maps showing key variables, discussion on forecast skill, and predictions of climate indices such as the global mean near-surface temperature and Atlantic multidecadal variability. it also estimates the probability of the global mean temperature exceeding 1.5°C above preindustrial levels for at least 1 year in the next 5 years, which helps policy-makers understand how closely the world is approaching this goal of the Paris Agreement. This paper, written by the authors of the GADCU, introduces the GADCU, presents its key outputs, and briefly discusses its role in providing vital climate information for society now and in the future..

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway

Langehaug, H. R., Ortega, P., Counillon, F., Matei, D., Maroon, E., Keenlyside, N., Mignot, J., Wang, Y., Swingedouw, D., Bethke, I., Yang, S., Danabasoglu, G., Bellucci, A., Ruggieri, P., Nicolì, D., Årthun, M. 2022: Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway. J Clim. https://doi.org/10.1007/s10236-022-01523-x

Summary: In this study, we find that dynamical prediction systems and their respective climate models struggle to realistically represent ocean surface temperature variability in the eastern subpolar North Atlantic and Nordic seas on interannual-to-decadal time scales. In previous studies, ocean advection is proposed as a key mechanism in propagating temperature anomalies along the Atlantic water pathway toward the Arctic Ocean. Our analysis suggests that the predicted temperature anomalies are not properly circulated to the north; this is a result of model errors that seems to be exacerbated by the effect of initialization shocks and forecast drift. Better climate predictions in the study region will thus require improving the initialization step, as well as enhancing process representation in the climate models.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Spatial patterns, mechanisms and predictability of Barents Sea ice change

Efstathiou, E., Eldevik, T., Årthun, M., Lind, S. 2022: Spatial patterns, mechanisms and predictability of Barents Sea ice change. J Clim. https://doi.org/10.1175/JCLI-D-21-0044.1  .

Summary: Recent Arctic winter sea ice loss has been most pronounced in the Barents Sea. Here we explore the spatial structure of Barents Sea ice change as observed over the last 40 years. The dominant mode of winter sea ice concentration interannual variability corresponds to areal change (explains 43% of spatial variance) and has a center of action in the northeastern Barents Sea where the temperate Atlantic inflow meets the wintertime sea-ice. Sea ice area import and northerly wind also contribute to this “areal-change mode”; the area increases with more ice import and stronger winds from the north. The remaining 57% variance in sea ice, individually and combined, redistributes the sea ice without changing the total area. The two leading redistribution modes are a dipole of increase in sea ice concentration south of Svalbard with decrease southwest of Novaya Zemlya, and a tripole of increase in the central Barents Sea with decrease east of Svalbard and in the southeastern Barents Sea. Redistribution is mainly contributed by anomalous wind and sea ice area import. Basic predictability, i.e., the lagged response to observed drivers, is predominantly associated with the areal-change mode as influenced by temperature of the Atlantic inflow and sea ice import from the Arctic.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Estimation of Ocean Biogeochemical Parameters in an Earth System Model Using the Dual One Step Ahead Smoother: A Twin Experiment

Singh, T., Counillon, F., Tjiputra, J., Wang Y., El Gharamti, M. 2022: Estimation of Ocean Biogeochemical Parameters in an Earth System Model Using the Dual One Step Ahead Smoother: A Twin Experiment. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.775394 .

For an easy-to-understand overview of this publication, produced in collaboration with the TRIATLAS project, we recommend starting with this neat article written by Henrike Wilborn, at NERSC: “Making climate models more accurate by improving their tuning.

Summary: Ocean biogeochemical (BGC) models utilise a large number of poorly-constrained global parameters to mimic unresolved processes and reproduce the observed complex spatio-temporal patterns. Large model errors stem primarily from inaccuracies in these parameters whose optimal values can vary both in space and time. This study aims to demonstrate the ability of ensemble data assimilation (DA) methods to provide high-quality and improved BGC parameters within an Earth system model in an idealized perfect twin experiment framework. We use the Norwegian Climate Prediction Model (NorCPM), which combines the Norwegian Earth System Model with the Dual-One-Step ahead smoothing-based Ensemble Kalman Filter (DOSA-EnKF). We aim to estimate five spatially varying BGC parameters by assimilating salinity and temperature profiles and surface BGC (Phytoplankton, Nitrate, Phosphate, Silicate, and Oxygen) observations in a strongly coupled DA framework—i.e., jointly updating ocean and BGC state-parameters during the assimilation. We show how BGC observations can effectively constrain error in the ocean physics and vice versa. The method converges quickly (less than a year) and largely reduces the errors in the BGC parameters. Some parameter error remains, but the resulting state variable error using the estimated parameters for a free ensemble run and for a reanalysis performs nearly as well as with true parameter values. Optimal parameter values can also be recovered by assimilating climatological BGC observations or sparse observational networks. The findings of this study demonstrate the applicability of the DA approach for tuning the system in a real framework.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Assessing the influence of sea surface temperature and arctic sea ice cover on the uncertainty in the boreal winter future climate projections

Cheung, HN., Keenlyside, N., Koenigk, T., Yang, S., Tian, T., Xu, Z., Gao, Y., Ogawa, F., Omrani, N.-E., Qiao, S., Zhou, W. 2022: Assessing the influence of sea surface temperature and arctic sea ice cover on the uncertainty in the boreal winter future climate projections. Clim. Dyn. https://doi.org/10.1007/s00382-022-06136-0

Summary: We investigate the uncertainty (i.e., inter-model spread) in future projections of the boreal winter climate, based on the forced response of ten models from the CMIP5 following the RCP8.5 scenario. The uncertainty in the forced response of sea level pressure (SLP) is large in the North Pacific, the North Atlantic, and the Arctic. A major part of these uncertainties (31%) is marked by a pattern with a center in the northeastern Pacific and a dipole over the northeastern Atlantic that we label as the Pacific–Atlantic SLP uncertainty pattern (PA∆SLP). The PA∆SLP is associated with distinct global sea surface temperature (SST) and Arctic sea ice cover (SIC) perturbation patterns. To better understand the nature of the PA∆SLP, these SST and SIC perturbation patterns are prescribed in experiments with two atmospheric models (AGCMs): CAM4 and IFS. The AGCM responses suggest that the SST uncertainty contributes to the North Pacific SLP uncertainty in CMIP5 models, through tropical–midlatitude interactions and a forced Rossby wavetrain. The North Atlantic SLP uncertainty in CMIP5 models is better explained by the combined effect of SST and SIC uncertainties, partly related to a Rossby wavetrain from the Pacific and air-sea interaction over the North Atlantic. Major discrepancies between the CMIP5 and AGCM forced responses over northern high-latitudes and continental regions are indicative of uncertainties arising from the AGCMs. We analyze the possible dynamic mechanisms of these responses, and discuss the limitations of this work.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Changes in Arctic Stratification and Mixed Layer Depth Cycle: A Modeling Analysis

Hordoir, R., Skagseth, Ø., Ingvaldsen, R.B., Sandø, A.B., Löptien, U., Dietze, H., Gierisch, A.M.U., Assmann K.A., Lundesgaard,Ø., Lind, S. 2022: Changes in Arctic Stratification and Mixed Layer Depth Cycle: A Modeling Analysis. JGR Oceans. https://doi.org/10.1029/2021JC017270

Summary: We analyzed the results of an ocean model simulation for the Arctic and North Atlantic oceans for the period 1970–2019. Our model is in line with the recent observed changes in the Arctic Ocean and allows, in contrast to the rather sparse observations, a detailed assessment of stratification changes. These changes will affect the Arctic ecosystem and are also believed to affect the large scale ocean circulation. We show that major changes in upper ocean conditions are caused by changes in the fresh water supply by sea ice and varying effect of the wind on regions that are now becoming ice-free. We also study the effect of changes in river runoff into the Arctic Ocean. Our study shows that an increase in river runoff can change the coastal circulation and results, paradoxically, in regions of higher salinity. These results point to the importance of modeling tools when it comes to a better understanding of ocean processes in a changing climate.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.