Tag: årthun

Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway

Langehaug, H. R., Ortega, P., Counillon, F., Matei, D., Maroon, E., Keenlyside, N., Mignot, J., Wang, Y., Swingedouw, D., Bethke, I., Yang, S., Danabasoglu, G., Bellucci, A., Ruggieri, P., Nicolì, D., Årthun, M. 2022: Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway. J Clim. https://doi.org/10.1007/s10236-022-01523-x

Summary: In this study, we find that dynamical prediction systems and their respective climate models struggle to realistically represent ocean surface temperature variability in the eastern subpolar North Atlantic and Nordic seas on interannual-to-decadal time scales. In previous studies, ocean advection is proposed as a key mechanism in propagating temperature anomalies along the Atlantic water pathway toward the Arctic Ocean. Our analysis suggests that the predicted temperature anomalies are not properly circulated to the north; this is a result of model errors that seems to be exacerbated by the effect of initialization shocks and forecast drift. Better climate predictions in the study region will thus require improving the initialization step, as well as enhancing process representation in the climate models.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Mechanisms of regional winter sea-ice variability in a warming Arctic

Dörr, J., Årthun, M., Eldevik, T., Madonna, E. 2021: Mechanisms of regional winter sea-ice variability in a warming Arctic. Journal of Climate. https://doi.org/10.1175/JCLI-D-21-0149.1 .

Summary: The Arctic winter sea ice cover is in retreat overlaid by large internal variability. Changes to sea ice are driven by exchange of heat, momentum, and freshwater within and between the ocean and the atmosphere. Using a combination of observations and output from the Community Earth System Model Large Ensemble, we analyze and contrast present and future drivers of the regional winter sea ice cover. Consistent with observations and previous studies, we find that for the recent decades ocean heat transport though the Barents Sea and Bering Strait is a major source of sea ice variability in the Atlantic and Pacific sectors of the Arctic, respectively. Future projections show a gradually expanding footprint of Pacific and Atlantic inflows highlighting the importance of future Atlantification and Pacification of the Arctic Ocean. While the dominant hemispheric modes of winter atmospheric circulation are only weakly connected to the sea ice, we find distinct local atmospheric circulation patterns associated with present and future regional sea ice variability in the Atlantic and Pacific sectors, consistent with heat and moisture transport from lower latitudes. Even if the total freshwater input from rivers is projected to increase substantially, its influence on simulated sea ice is small in the context of internal variability.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Variable Nordic Seas Inflow Linked to Shifts in North Atlantic Circulation

Asbjørnsen, H., Johnson, H.L., Årthun, M. 2021: Variable Nordic Seas Inflow Linked to Shifts in North Atlantic Circulation. Journal of Climate. https://doi.org/10.1175/JCLI-D-20-0917.1 .

Summary: The inflow across the Iceland-Scotland Ridge determines the amount of heat supplied to the Nordic Seas from the subpolar North Atlantic (SPNA). Consequently, variable inflow properties and volume transport at the ridge influence marine ecosystems and sea ice extent further north. Here, we identify the upstream pathways of the Nordic Seas inflow, and assess the mechanisms responsible for interannual inflow variability. Using an eddy-permitting ocean model hindcast and a Lagrangian analysis tool, numerical particles are released at the ridge during 1986-2015 and tracked backward in time. We find an inflow that is well-mixed in terms of its properties, where 64% comes from the subtropics and 26% has a subpolar or Arctic origin. The local instantaneous response to the NAO is important for the overall transport of both subtropical and Arctic-origin waters at the ridge. In the years before reaching the ridge, the subtropical particles are influenced by atmospheric circulation anomalies in the gyre boundary region and over the SPNA, forcing shifts in the North Atlantic Current (NAC) and the subpolar front. An equatorward shifted NAC and westward shifted subpolar front correspond to a warmer, more saline inflow. Atmospheric circulation anomalies over the SPNA also affect the amount of Arctic-origin water re-routed from the Labrador Current toward the Nordic Seas. A high transport of Arctic-origin water is associated with a colder, fresher inflow across the Iceland-Scotland Ridge. The results thus demonstrate the importance of gyre dynamics and wind forcing in affecting the Nordic Seas inflow properties and volume transport.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Skilful prediction of cod stocks in the North and Barents Sea a decade in advance

Koul, V., Sguotti, C., Årthun, M., Brune, S., Düsterhus, Bogstad, B., Ottersen, G., Baehr, J., Schrum, C. 2021: Skilful prediction of cod stocks in the North and Barents Sea a decade in advance. Nature Communications Earth & Environment. https://doi.org/10.1038/s43247-021-00207-6 .

Summary: Reliable information about the future state of the ocean and fish stocks is necessary for informed decision-making by fisheries scientists, managers and the industry. However, regional ocean climate and fish stock predictions for the next few years, and up to 10 years, have until now had low forecast skill. In this article, the authors provide skilful forecasts of the biomass of cod stocks in the North and Barents Seas 10 years in advance. These point to a continuation of unfavorable oceanic conditions for the North Sea cod in the coming years, which would inhibit its recovery at present fishing levels, and a decrease in Northeast Arctic cod stock compared to the recent high levels.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Future Abrupt Changes in Winter Barents Sea Ice Area (Master’s thesis)

Rieke, Ole (2021-06-01). Future Abrupt Changes in Winter Barents Sea Ice Area (Master’s thesis, University of Bergen, Bergen, Norway). https://bora.uib.no/bora-xmlui/handle/11250/2762637 .

Summary: The Barents Sea is an area of strong anthropogenic winter sea ice loss that is superimposed by pronounced internal variability on interannual to multidecadal timescales. This internal variability represents a source of large uncertainty in future climate projections in the Barents Sea. This study aims to investigate internal variability of Barents Sea ice area and its driving mechanisms in future climate simulations of the Community Earth System Model Large Ensemble under the RCP8.5 climate scenario. We find that although sea ice area is projected to decline towards ice-free conditions, internal variability remains strong until late in the 21st century. A substantial part of this variability is expressed as events of abrupt change in the sea ice cover. These internally-driven events with a duration of 5-9 years can mask or enhance the anthropogenically-forced sea ice trend and lead to substantial ice growth or ice loss. Abrupt sea ice trends are a common feature of the Barents Sea in the future until the region becomes close to ice-free. Interannual variability in general, and in form of these sub-decadal events specifically, is forced by a combination of ocean heat transport, meridional winds and ice import, with ocean heat transport as the most dominant contributor. Our analysis shows that the influence of these mechanisms remains largely unchanged throughout the simulation. Investigation of a simulation from the same model where global warming is limited to 2°C shows that both mean and variability of sea ice area in the Barents Sea can be sustained at a substantial level in the future, and that abrupt changes can continue to occur frequently and produce sea ice cover of similar extent to present day climate. This highlights that future emissions play an essential role in the further decline of the Barents Sea winter sea ice cover. The results of this thesis contribute to a better understanding of Arctic sea ice variability on different time scales, and especially on the role of internal variability which is important in order to predict future sea ice changes under anthropogenic warming.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Mechanisms of decadal North Atlantic climate variability and implications for the recent cold anomaly

Arthun, M., Wills, R. C. J., Johnson, H. L., Chafik, L., Langehaug, H. R. 2021: Mechanisms of decadal North Atlantic climate variability and implications for the recent cold anomaly. J Clim, 1-52. https://doi.org/10.1175/JCLI-D-20-0464.1 .
Summary: Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

The Arctic Mediterranean In Interacting Climates of Ocean Basins Observations, Mechanisms, Predictability, and Impacts

Eldevik, T., Smedsrud, L.H., Li, C., Årthun, M., Madonna, E., Svendsen, L. 2020: The Arctic Mediterranean. In: Mechoso (Ed.). Interacting Climates of Ocean Basins Observations, Mechanisms, Predictability, and Impacts. Cambridge University Press, 2020, 186-215 . https://doi.org/10.1017/9781108610995.007 .
Summary: The Arctic Mediterranean sits on the “top of the world” and connects the Atlantic and Pacific climate realms via the cold Arctic. It is the combined basin of the Nordic Seas (the Norwegian, Iceland, and Greenland seas) and the Arctic Ocean confined by the Arctic land masses – thus making it a Mediterranean ocean (Figure 6.1; e.g., Aagaard et al., 1985). The Arctic Mediterranean is small for a World Ocean but its heat loss and freshwater uptake is disproportionally large (e.g., Ganachaud and Wunsch, 2000; Eldevik and Nilsen, 2013; Haine et al., 2015). With the combined presence of the Gulf Stream’s northern limb, regional freshwater stratification, and a retreating sea-ice cover, it is likely where water mass contrasts, shifting air-ocean-ice interaction, and climate change are most pronounced in the present world oceans (Stocker et al., 2013; Vihma, 2014).

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Mechanisms and pathways of ocean heat anomalies in the Arctic-Atlantic region (PhD thesis)

Asbjørnsen, Helene (2020-12-10). Mechanisms and pathways of ocean heat anomalies in the Arctic-Atlantic region (PhD thesis, University of Bergen, Bergen, Norway). https://bora.uib.no/bora-xmlui/handle/11250/2712025 .

Summary: Along the Atlantic water pathway, from the Gulf Stream in the south to the Arctic Ocean in the north, variability in ocean heat content is pronounced on interannual to decadal time scales. Ocean heat anomalies in this Arctic-Atlantic sector are known to affect Arctic sea ice extent, marine ecosystems, and continental climate. However, there is at present neither consensus nor any complete understanding of the mechanisms causing such heat anomalies. This dissertation obtains a more robust understanding of regional ocean heat content variability by assessing the mechanisms and pathways of ocean heat anomalies in the Arctic-Atlantic region. The results are presented in three papers.

The first paper investigates the link between a variable Nordic Seas inflow and large- scale ocean circulation changes upstream. Using a global, eddy-permitting ocean hind- cast together with a Lagrangian analysis tool, numerical particles are seeded at the Iceland-Scotland Ridge and tracked backward in time. Water from the subtropics sup- plied by the North Atlantic Current (NAC) is found to be the main component of the Nordic Seas inflow (64%), while 26% of the inflow has a subpolar or Arctic origin. Different atmospheric patterns are seen to affect the circulation strength along the advective pathways, as well as the supply of subtropical and Arctic-origin water to the ridge through shifts in the NAC and the subpolar front. A robust link between a high transport of Arctic-origin water and a cold and fresh inflow is furthermore established, while a high transport of subtropical water leads to higher inflow salinities. The second paper investigates the mechanisms of interannual heat content variability in the Norwegian Sea downstream of the Iceland-Scotland Ridge, using a state-of-the-art ocean state estimate and closed heat budget diagnostics. Ocean advection is found to be the primary contributor to heat content variability in the Atlantic domain of the Norwegian Sea, although local surface fluxes also play an active role. Anomalous heat advection furthermore depends on the strength of the Atlantic water inflow and the conditions upstream of the ridge. Combined, the two papers demonstrate the importance of gyre dynamics and large-scale wind forcing in causing variability at the ridge, while high- lighting the impacts on Norwegian Sea heat content downstream.

For the third paper, warming trends in the Barents Sea and Fram Strait are explored, and, thus, the mechanisms underlying recent Atlantification of the Arctic Ocean. The Barents Sea is seen to transition to a warmer state, with reduced sea ice concentrations and Atlantic water extending further poleward. The mechanisms driving the warming are, however, found to be regionally dependent and not stationary in time. In the ice- free region, ocean advection is found to be a major driver of the warming trend due to increasing inflow temperatures in the late 1990s and early 2000s, while reduced ocean heat loss is contributing to the warming trend from the mid-2000s and onward. A considerable upper-ocean warming and a weakened stratification is seen in the ice- covered northwestern Barents Sea. However, in contrast to what has been previously hypothesized, the results do not point to increased upward heat fluxes from the Atlantic water layer to the Arctic surface layer as the source of the upper-ocean warming.

The supply of Atlantic heat to the Nordic Seas and the Arctic Ocean has been scrutinized using both Lagrangian methods and heat budget diagnostics. Combined, the three papers demonstrate the important role of ocean heat transport in causing regional heat content variability and change in the Arctic-Atlantic region. A better understanding of interannual to decadal ocean heat content variability has implications for future prediction efforts, and for how we understand the ocean’s role in ongoing and future climate change.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

The seasonal and regional transition to an ice‐free Arctic

Arthun, M., Onarheim, I. H., Dörr, J., Eldevik, T. 2020: The seasonal and regional transition to an ice‐free Arctic. Geophysical Research Letters 47. https://doi.org/10.1029/2020GL090825
Summary: We examine current and future Arctic sea ice loss in the latest generation of global climate models (CMIP6) focusing on regional and seasonal variability. We find that, unlike today, future Arctic sea ice loss will take place in all regions and all seasons. All Arctic shelf seas will become ice free in summer even if we follow a low emission scenario. Although future sea ice loss also takes place in winter, only the Barents Sea becomes ice free in winter before the end of this century.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Mechanisms underlying recent Arctic Atlantification

Asbjørnsen, H., Årthun, M., Skagseth, Ø., Eldevik, T. 2020: Mechanisms underlying recent Arctic Atlantification. Geophys. Res. Lett. https://doi.org/10.1029/2020GL088036 .
Summary: Recent “Atlantification” of the Arctic is characterized by warmer ocean temperatures and a reduced sea ice cover. The Barents Sea is a “hot spot” for these changes, something which has broad socioeconomic and environmental impacts in the region. However, there is, at present, no complete understanding of what is causing the ocean warming. Here, we determine the relative importance of transport of heat by ocean currents (ocean advection) and heat exchanges between the atmosphere and the ocean (air-sea heat fluxes) in warming the Barents Sea and Fram Strait. In the ice-free region, ocean advection is found to be the main driver of the warming trend due to increasing inflow temperatures between 1996 and 2006. In the marginal ice zone and the ice-covered northern Barents Sea, ocean advection and air-sea heat fluxes are found to be of interchanging importance in driving the warming trend through the 1993–2014 period analyzed. A better understanding of the recent warming trends in the Barents Sea and Fram Strait has implications for how we understand the ocean’s role in ongoing and future Arctic climate change.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.