Tag: counillon

An ensemble-based coupled reanalysis of the climate from 1860 to the present (CoRea1860+)

Wang, Y., Counillon, F., Svendsen, L., Chiu, P.-G., Keenlyside, N., Laloyaux, P., Koseki, M., and de Boisseson, E. 2025: An ensemble-based coupled reanalysis of the climate from 1860 to the present (CoRea1860+). Earth Syst. Sci. Data. https://doi.org/10.5194/essd-17-4185-2025

Summary: Climate reanalyses are essential for studying climate variability, understanding climate processes, and initializing climate predictions. We present CoRea1860+ (Wang and Counillon, 2025, https://doi.org/10.11582/2025.00009), a 30-member coupled reanalysis spanning from 1860 to the present, produced using the Norwegian Climate Prediction Model (NorCPM) and assimilating sea surface temperature (SST) observations. NorCPM combines the Norwegian Earth System Model with the ensemble Kalman filter data assimilation method. SST, available throughout the entire period, serves as the primary source of instrumental oceanic measurements prior to the 1950s. CoRea1860+ belongs to the category of sparse-input reanalyses, designed to minimize artefacts arising from changes in the observation network over time. By exclusively assimilating oceanic data, this reanalysis offers valuable insights into the ocean’s role in driving climate system variability, including its influence on the atmosphere and sea ice. This study first describes the numerical model, the SST dataset, and the assimilation implementation used to produce CoRea1860+. It then provides a comprehensive evaluation of the reanalysis across four key aspects, namely reliability, ocean variability, sea ice variability, and atmospheric variability, benchmarked against more than 10 independent reanalyses and observational datasets. Overall, CoRea1860+ demonstrates strong reliability, particularly in observation-rich periods, and provides a reasonable representation of climate variability. It successfully captures key features such as multi-decadal variability and long-term trends in ocean heat content, the Atlantic meridional overturning circulation, and sea ice variability in both hemispheres. Furthermore, to some extent, CoRea1860+ agrees with the reference atmospheric datasets for surface air temperature, precipitation, sea level pressure, and 500 hPa geopotential height, especially in the tropics where air–sea interactions are most pronounced.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Improving Ocean Reanalysis with the Offline Ensemble Kalman Smoother

Wang, Y., Counillon, F., Ying, Y., Barthélémy, S., Evensen, G. 2025: Improving Ocean Reanalysis with the Offline Ensemble Kalman Smoother. Tellus A. https://doi.org/10.16993/tellusa.4087

Summary: The Ensemble Kalman Smoother (EnKS), an extension of the Ensemble Kalman Filter, can improve the accuracy of the state estimate by assimilating ‘future’ observations. We propose to use the EnKS algorithm to enhance the accuracy and reliability of preexisting reanalyses produced with a fully coupled Earth system model. The offline EnKS is applied to two reanalyses of the Norwegian Climate Prediction Model (NorCPM) to update sea surface height, mixed layer depth, and temperature and salinity for all depth levels of the reanalyses. In an idealized framework, we tune temporal localization parameters and reveal that the optimal temporal localization parameter is 0.1, corresponding to a time delay of about 13 days. In a real framework, we find that observation error variance has to be inflated by a factor of four to account for the autocorrelation of the gridded observational product and avoid overfitting. In both frameworks, the offline EnKS improves the accuracy for the top 300 m temperature, sea surface height, and mixed layer depth, but yields limited improvements in the top 300 m salinity and the water properties below 300 m. Also, it enhances the reliability of the reanalysis. The improvement is notably lower in a real framework than in an idealized framework; this is mostly due to the lack of high quality and independent datasets for proper validation. Overall, this study demonstrates that the offline EnKS has the potential for efficiently improving pre-existing reanalyses.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Warming and freshening coastal waters impact harmful algal bloom frequency in high latitudes

Silva, E., Counillon, F., Brajard, J., Davy, R., Outten, S., Pettersson, L.H. and Keenlyside, N. 2025: Warming and freshening coastal waters impact harmful algal bloom frequency in high latitudes. Commun Earth Environ. https://doi.org/10.1038/s43247-025-02421-y

Summary: Harmful algal blooms contaminate seafood with toxins and poison humans and wildlife upon consumption. Toxic algae niches are projected to expand in high latitudes, but how the frequency of their blooms will evolve is still little known. Here we use climate models, 14 years of observations and probabilistic models of toxic algae, to assess the frequency of harmful algal blooms in a future warmer world. The warmer ocean temperatures increase the blooms in spring and autumn. However, the blooms reduce in summer as surface waters become excessively warm. Freshening reduces the blooms of species confined to high salinity ranges and has no effect on increasing the blooms. In a 3 °C warmer world, the blooms of D. acuta might increase by 50% and A. tamarense complex reduce by 40% along the Norwegian coast. Therefore, humans and wildlife are likely to become more exposed to diarrheic toxins and less to paralytic toxins.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

A novel ensemble-based parameter estimation for improving ocean biogeochemistry in an Earth system model

Singh, T., Counillon, F., Tjiputra, J., Wang, Y. 2025: A novel ensemble-based parameter estimation for improving ocean biogeochemistry in an Earth system model. JAMES. https://doi.org/10.1029/2024MS004237

Summary: Estimating ocean biogeochemistry (BGC) parameters in Earth System Models is challenging due to multiple error sources and interlinked parameter sensitivities. Reducing the temperature and salinity bias in the ocean physical component of the Norwegian Earth System Model (NorESM) diminishes the BGC state bias at intermediate depth but leads to a greater bias increase near the surface. This suggests that BGC parameters are tuned to compensate for the physical ocean model biases. We successfully apply the iterative ensemble smoother data assimilation technique to estimate BGC parameters in NorESM with reduced bias in its physical ocean component. We estimate BGC parameters based on the monthly climatological error of nitrate, phosphate, and oxygen in a coupled reanalysis of NorESM that assimilates observed monthly climatology of temperature and salinity. First, we compare the performance of globally uniform and spatially varying parameter estimations. Both approaches reduce BGC bias obtained with default parameters, even for variables not assimilated in the parameter estimation (e.g., CO2 fluxes and primary production). While spatial parameter estimation performs locally best, it also increases biases in areas with few observations, and overall performs poorer than global parameter estimation. A second iteration further reduces the bias in the near-surface BGC with global parameter estimation. Finally, we assess the performance of global estimated parameters in a 30-year coupled reanalysis produced by assimilating time-varying temperature and salinity observations. This reanalysis reduces error by 10%–20% for phosphate, nitrate, oxygen, and dissolved inorganic carbon compared to a reanalysis done with default parameters.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Improving subseasonal forecast skill in the Norwegian Climate Prediction Model using soil moisture data assimilation

Nair, A.S., Counillon, F., Keenlyside, N. 2024: Improving subseasonal forecast skill in the Norwegian Climate Prediction Model using soil moisture data assimilation. Clim Dyn. https://doi.org/10.1007/s00382-024-07444-3

Summary: This study shows the importance of soil moisture (SM) in subseasonal-to-seasonal (S2S) predictions at mid-latitudes. We do this through introducing the Norwegian Climate Prediction Model Land (NorCPM-Land), a land reanalysis framework tailored for integration with the Norwegian Climate Prediction Model (NorCPM). NorCPM-Land assimilates blended SM data from the European Space Agency’s Climate Change Initiative into a 30-member offline simulation of the Community Land Model with fluxes from the coupled model. The assimilation of SM data reduces error in SM by 10.5 % when validated against independent SM observations. It also improves latent heat flux estimates, illustrating that the adjustment of underlying SM significantly augments the capacity to model land surface dynamics. We evaluate the added value of land initialisation for subseasonal predictions, by comparing the performance of hindcasts (retrospective prediction) using the standard NorCPM with a version where the land initial condition is taken from NorCPM-Land reanalysis. The hindcast covers the period 2000 to 2019 with four start dates per year. Land initialisation enhances SM predictions, reducing error by up to 2.5-month lead time. Likewise, the error for precipitation and temperature shows improvement up to a lead time of 1.5-month. The largest improvements are observed in regions with significant land-atmospheric coupling, such as the Central United States, the Sahel, and Central India. This method further enhances the prediction of extreme temperature variations, both high and low, with the most notable improvements seen in regions at mid and high latitudes, including parts of Europe, the United States, and Asia. Overall, our study provides further evidence for the significant role of SM content in enhancing the accuracy of subseasonal predictions. This study introduces a technique for improved land initialisation, utilising the same model employed in climate predictions.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Hybrid covariance super-resolution data assimilation

Barthélémy, S., Counillon, F., Brajard, J., Bertino, L. 2024: Hybrid covariance super-resolution data assimilation. Ocean Dynamics. https://doi.org/10.1007/s10236-024-01643-6

Summary: The super-resolution data assimilation (SRDA) enhances a low-resolution (LR) model with a Neural Network (NN) that has learned the differences between high and low-resolution models offline and performs data assimilation in high-resolution (HR). The method enhances the accuracy of the EnKF-LR system for a minor computational overhead. However, performance quickly saturates when the ensemble size is increased due to the error introduced by the NN. We therefore combine the SRDA with the mixed-resolution data assimilation method (MRDA) into a method called “Hybrid covariance super-resolution data assimilation” (Hybrid SRDA). The forecast step runs an ensemble at two resolutions (high and low). The assimilation is done in the HR space by performing super-resolution on the LR members with the NN. The assimilation uses the hybrid covariance that combines the emulated and dynamical HR members. The scheme is extensively tested with a quasi-geostrophic model in twin experiments, with the LR grid being twice coarser than the HR. The Hybrid SRDA outperforms the SRDA, the MRDA, and the EnKF-HR at a given computational cost. The benefit is the largest compared to the EnKF-HR for small ensembles. However, even with larger computational resources, using a mix of high and low-resolution members is worth it. Besides, the Hybrid SRDA, the EnKF-HR, and the SRDA, unlike the MRDA, prevent the smoothing of dynamical structures of the background error covariance matrix. The Hybrid SRDA method is also attractive because it is customizable to available resources.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Earth System Reanalysis in Support of Climate Model Improvements

Stammer, D., Amrhein, D.E., Alonso Balmaseda, M., Bertino, L., Bonavita, M., Buontempo, C., Caltabiano, N., Counillon, F., Fenty, I., Ferrari, R., Fujii, Y., et al. 2024: Earth System Reanalysis in Support of Climate Model Improvements. Bull. Amer. Meteor. Soc.. https://doi.org/10.1175/BAMS-D-24-0110.1

Summary: A 3-day workshop took place from 12 to 14 June 2023, at the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, focusing on data assimilation (DA) and machine learning (ML) in the context of Earth system reanalysis and climate model improvements.
The workshop, organized 25 years after the inception of the Estimating the Circulation and Climate of the Ocean (ECCO), was an effort to lay out the roadmap for future development of DA in support of climate modeling and climate knowledge improvements, or “climate DA.” The following is a summary of the workshop outcomes and recommendations arising to move the field of DA forward in the context of climate modeling.
Recent climate model developments, established through increased model resolution, have led to substantial improvements in model simulations of the time-evolving, coupled Earth system and its subcomponents. However, regardless of resolution, climate models will always produce climate features and variability that differ from the real world and will be prone to biases. This is due to many remaining uncertainties, such as in parametric and structural model uncertainty, in the initial conditions prescribed, and in the prescribed (scenario) forcing which varies on decadal to centennial time scales.
Further model improvements are expected to arise specifically from the improved representation of physical processes realized through model–data fusion. This will create an unprecedented opportunity to better exploit a large array of Earth observations, from in situ measurements to weather radars and satellite observations, as the resolved scales of the models approach those of the observations. For this, climate DA will be the central tool to bring models and observations into consistency, by improving initial conditions, inferring uncertain model parameters and structure, and quantifying uncertainty. Generally, there will be advantages and complementarities of adjoint-based smoother approaches, ensemble-based filter approaches, or new ML-inspired approaches. Yet the ever-increasing model resolution will present growing challenges arising from computational cost, calling for new ways of performing data assimilation and model optimization. Using the complementarity in a hybrid approach, blending tools and concepts from variational, ensemble, and ML methods might be what is required in the future. In this context, ML could be important to handle nonlinear responses and to better approximate non-Gaussian distributions.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect

Irvalı, N., Ninnemann, U.S., Olsen, A., Rose, N.L., Thornalley, D.J., Mjell, T.L., Counillon, F. 2024: Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect. Geochronology. https://doi.org/10.5194/gchron-6-449-2024

Summary: Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Overlapping with instrumental records, they hold the potential to elucidate natural variability and contextualize current changes. Yet, dating uncertainties of traditional approaches (e.g., up to ± 30–50 years for the last 2 centuries) pose major challenges for integrating the shorter instrumental records with these extended marine archives. Hence, robust sediment chronologies are crucial, and most existing age model constraints do not provide sufficient age control, particularly for the 20th century, which is the most critical period for comparing proxy records to historical changes. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles to reduce age model uncertainties in high-resolution marine archives. As a test, we apply this new approach to a marine sediment core located at the Gardar Drift, in the subpolar North Atlantic, and revise the previously published age model for this site. We further provide a refined estimate of regional reservoir corrections and uncertainties for Gardar Drift.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison

Bushuk, M., Ali, S., Bailey, D.A., Bao, Q., Batté, L., Bhatt, U.S., Blanchard-Wrigglesworth, E., Blockley, E., Cawley, G., Chi, J., Counillon, F., et al. 2024: Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison. Bull. Amer. Meteor. Soc.. https://doi.org/10.1175/BAMS-D-23-0163.1

Summary: This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.