Category: PublicationsRA1

Understanding the dynamics of recent Norwegian extreme weather events and their influence on energy production

Pecnjak, Martin (2021-08-05). Understanding the dynamics of recent Norwegian extreme weather events and their influence on energy production (Master’s thesis, University of Bergen, Bergen, Norway). https://bora.uib.no/bora-xmlui/handle/11250/2778409 .

Summary: The growing frequency and severity of extreme weather events in the Northern Hemisphere has prompted a lot of research being done on their origin and physical mechanisms. Both simplified and complex approaches have been introduced in defining and understanding these events, where they look into high-amplitude quasi-stationary Rossby waves and their quasi-resonant amplification. However, different approaches exist to investigating extreme events and these were just a motivation for this thesis. Since the resonance method is suit- able mostly for summer events and the events discussed in this thesis have happened in all seasons, a different approach was needed. The events in question were a winter drought, two summer and autumn floods, a winter snowfall and a spring/summer heatwave in the areas of south and southwestern Norway. In order to detect certain features which would help solve this issue, we look into anomalies of different meteorological variables such as geopoten- tial height, surface temperature, precipitation and snowfall rate and zonal and meridional winds. Deep and thorough statistical and dynamical analyses are applied to define the out- comes and the physical origins which would help us obtain a clear picture on the whole case. The finite-amplitude local wave activity (LWA) diagnostic, as a measure of the meandering of the jet stream, has helped to give a clear picture along with the large-scale circulation. This method can be used as a proxy for the strength of the eddy-driven jet and the storm track. It has proven to be the key factor in defining what has exactly caused the events in ques- tion. The results and findings have shown that the LWA is a conclusive tool in determining whether an extreme event was related to a blocking pattern or not, while the LWA budget equation components have shed light on the so far poorly understood dynamical aspects which led to the events. The zonal LWA flux has proven to be a good predictor of blocking with its onset in the early stages of the events, similar to the traffic jam concept introduced by (Nakamura and Huang, 2018). The jet stream has a capacity for the LWA flux similar to how a highway has a capacity for the number of vehicles on it. If the capacity is exceeded, blocking occurs, and this is readily shown in the results and findings of this work. As for the budget equation components, the zonal LWA flux convergence has proven to be the key in maintaining the increase of the LWA as well as also having an early onset in each blocking event in agreement with the LWA flux. On the other hand, the residual in the LWA budget, which represents the non-conservative small-scale processes (diabatic sources and sinks of LWA), dampens the LWA. The LWA method has also proven to be useful in all seasons. The motivation for the thesis also came from the influence of the events on the meteorological variables related to the Norwegian energy production. The results show us clues into possible ways of improving forecasting of such events and minimizing their harmful impacts. They also show possibilities in improving energy management, infrastructure, allocation of resources and preparedness of the society for damages and hazards caused by the events. This was not fully investigated in this thesis and is the next step in the research of this topic.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Variable Nordic Seas Inflow Linked to Shifts in North Atlantic Circulation

Asbjørnsen, H., Johnson, H.L., Årthun, M. 2021: Variable Nordic Seas Inflow Linked to Shifts in North Atlantic Circulation. Journal of Climate. https://doi.org/10.1175/JCLI-D-20-0917.1 .

Summary: The inflow across the Iceland-Scotland Ridge determines the amount of heat supplied to the Nordic Seas from the subpolar North Atlantic (SPNA). Consequently, variable inflow properties and volume transport at the ridge influence marine ecosystems and sea ice extent further north. Here, we identify the upstream pathways of the Nordic Seas inflow, and assess the mechanisms responsible for interannual inflow variability. Using an eddy-permitting ocean model hindcast and a Lagrangian analysis tool, numerical particles are released at the ridge during 1986-2015 and tracked backward in time. We find an inflow that is well-mixed in terms of its properties, where 64% comes from the subtropics and 26% has a subpolar or Arctic origin. The local instantaneous response to the NAO is important for the overall transport of both subtropical and Arctic-origin waters at the ridge. In the years before reaching the ridge, the subtropical particles are influenced by atmospheric circulation anomalies in the gyre boundary region and over the SPNA, forcing shifts in the North Atlantic Current (NAC) and the subpolar front. An equatorward shifted NAC and westward shifted subpolar front correspond to a warmer, more saline inflow. Atmospheric circulation anomalies over the SPNA also affect the amount of Arctic-origin water re-routed from the Labrador Current toward the Nordic Seas. A high transport of Arctic-origin water is associated with a colder, fresher inflow across the Iceland-Scotland Ridge. The results thus demonstrate the importance of gyre dynamics and wind forcing in affecting the Nordic Seas inflow properties and volume transport.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Pacific contribution to decadal surface temperature trends in the Arctic during the twentieth century

Svendsen, L., Keenlyside, N., Muilwijk, M., Bethke, I., Omrani, N.-E., Gao, Y. 2021: Pacific contribution to decadal surface temperature trends in the Arctic during the twentieth century. Climate Dynamics. DOI: 10.1007/s00382-021-05868-9 .

Summary: Instrumental records suggest multidecadal variability in Arctic surface temperature throughout the twentieth century. This variability is caused by a combination of external forcing and internal variability, but their relative importance remains unclear. Since the early twentieth century Arctic warming has been linked to decadal variability in the Pacific, we hypothesize that the Pacific could impact decadal temperature trends in the Arctic throughout the twentieth century. To investigate this, we compare two ensembles of historical all-forcing twentieth century simulations with the Norwegian Earth System Model (NorESM): (1) a fully coupled ensemble and (2) an ensemble where momentum flux anomalies from reanalysis are prescribed over the Indo-Pacific Ocean to constrain Pacific sea surface temperature variability. We find that the combined effect of tropical and extratropical Pacific decadal variability can explain up to ~ 50% of the observed decadal surface temperature trends in the Arctic. The Pacific-Arctic connection involves both lower tropospheric horizontal advection and subsidence-induced adiabatic heating, mediated by Aleutian Low variations. This link is detected across the twentieth century, but the response in Arctic surface temperature is moderated by external forcing and surface feedbacks. Our results also indicate that increased ocean heat transport from the Atlantic to the Arctic could have compensated for the impact of a cooling Pacific at the turn of the twenty-first century. These results have implications for understanding the present Arctic warming and future climate variations.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Skilful prediction of cod stocks in the North and Barents Sea a decade in advance

Koul, V., Sguotti, C., Årthun, M., Brune, S., Düsterhus, Bogstad, B., Ottersen, G., Baehr, J., Schrum, C. 2021: Skilful prediction of cod stocks in the North and Barents Sea a decade in advance. Nature Communications Earth & Environment. https://doi.org/10.1038/s43247-021-00207-6 .

Summary: Reliable information about the future state of the ocean and fish stocks is necessary for informed decision-making by fisheries scientists, managers and the industry. However, regional ocean climate and fish stock predictions for the next few years, and up to 10 years, have until now had low forecast skill. In this article, the authors provide skilful forecasts of the biomass of cod stocks in the North and Barents Seas 10 years in advance. These point to a continuation of unfavorable oceanic conditions for the North Sea cod in the coming years, which would inhibit its recovery at present fishing levels, and a decrease in Northeast Arctic cod stock compared to the recent high levels.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Barents Sea plankton production and controlling factors in a fluctuating climate

Sandø, A.B., Mousing, E.A., Budgell, W.P., Hjøllo, S.S., Skogen, M.D., Ådlandsvik, B. 2021: Barents Sea plankton production and controlling factors in a fluctuating climate. Journal of Climate. https://doi.org/10.1175/JCLI-D-21-0149.1 .

Summary: The Barents Sea and its marine ecosystem is exposed to many different processes related to the seasonal light variability, formation and melting of sea-ice, wind-induced mixing, and exchange of heat and nutrients with neighbouring ocean regions. A global model for the RCP4.5 scenario was downscaled, evaluated, and combined with a biophysical model to study how future variability and trends in temperature, sea-ice concentration, light, and wind-induced mixing potentially affect the lower trophic levels in the Barents Sea marine ecosystem. During the integration period (2010–2070), only a modest change in climate variables and biological production was found, compared to the inter-annual and decadal variability. The most prominent change was projected for the mid-2040s with a sudden decrease in biological production, largely controlled by covarying changes in heat inflow, wind, and sea-ice extent. The northernmost parts exhibited increased access to light during the productive season due to decreased sea-ice extent, leading to increased primary and secondary production in periods of low sea-ice concentrations. In the southern parts, variable access to nutrients as a function of wind-induced mixing and mixed layer depth were found to be the most dominating factors controlling variability in primary and secondary production.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Future Abrupt Changes in Winter Barents Sea Ice Area

Rieke, Ole (2021-06-01). Future Abrupt Changes in Winter Barents Sea Ice Area (Master’s thesis, University of Bergen, Bergen, Norway). https://bora.uib.no/bora-xmlui/handle/11250/2762637 .

Summary: The Barents Sea is an area of strong anthropogenic winter sea ice loss that is superimposed by pronounced internal variability on interannual to multidecadal timescales. This internal variability represents a source of large uncertainty in future climate projections in the Barents Sea. This study aims to investigate internal variability of Barents Sea ice area and its driving mechanisms in future climate simulations of the Community Earth System Model Large Ensemble under the RCP8.5 climate scenario. We find that although sea ice area is projected to decline towards ice-free conditions, internal variability remains strong until late in the 21st century. A substantial part of this variability is expressed as events of abrupt change in the sea ice cover. These internally-driven events with a duration of 5-9 years can mask or enhance the anthropogenically-forced sea ice trend and lead to substantial ice growth or ice loss. Abrupt sea ice trends are a common feature of the Barents Sea in the future until the region becomes close to ice-free. Interannual variability in general, and in form of these sub-decadal events specifically, is forced by a combination of ocean heat transport, meridional winds and ice import, with ocean heat transport as the most dominant contributor. Our analysis shows that the influence of these mechanisms remains largely unchanged throughout the simulation. Investigation of a simulation from the same model where global warming is limited to 2°C shows that both mean and variability of sea ice area in the Barents Sea can be sustained at a substantial level in the future, and that abrupt changes can continue to occur frequently and produce sea ice cover of similar extent to present day climate. This highlights that future emissions play an essential role in the further decline of the Barents Sea winter sea ice cover. The results of this thesis contribute to a better understanding of Arctic sea ice variability on different time scales, and especially on the role of internal variability which is important in order to predict future sea ice changes under anthropogenic warming.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Future Abrupt Changes in Winter Barents Sea Ice Area

Rieke, Ole (2021-06-01). Future Abrupt Changes in Winter Barents Sea Ice Area (Master’s thesis, University of Bergen, Bergen, Norway). https://bora.uib.no/bora-xmlui/handle/11250/2762637

Summary: The Barents Sea is an area of strong anthropogenic winter sea ice loss that is superimposed by pronounced internal variability on interannual to multidecadal timescales. This internal variability represents a source of large uncertainty in future climate projections in the Barents Sea. This study aims to investigate internal variability of Barents Sea ice area and its driving mechanisms in future climate simulations of the Community Earth System Model Large Ensemble under the RCP8.5 climate scenario. We find that although sea ice area is projected to decline towards ice-free conditions, internal variability remains strong until late in the 21st century. A substantial part of this variability is expressed as events of abrupt change in the sea ice cover. These internally-driven events with a duration of 5-9 years can mask or enhance the anthropogenically-forced sea ice trend and lead to substantial ice growth or ice loss. Abrupt sea ice trends are a common feature of the Barents Sea in the future until the region becomes close to ice-free. Interannual variability in general, and in form of these sub-decadal events specifically, is forced by a combination of ocean heat transport, meridional winds and ice import, with ocean heat transport as the most dominant contributor. Our analysis shows that the influence of these mechanisms remains largely unchanged throughout the simulation. Investigation of a simulation from the same model where global warming is limited to 2°C shows that both mean and variability of sea ice area in the Barents Sea can be sustained at a substantial level in the future, and that abrupt changes can continue to occur frequently and produce sea ice cover of similar extent to present day climate. This highlights that future emissions play an essential role in the further decline of the Barents Sea winter sea ice cover. The results of this thesis contribute to a better understanding of Arctic sea ice variability on different time scales, and especially on the role of internal variability which is important in order to predict future sea ice changes under anthropogenic warming.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

The Atlantic Multidecadal Variability phase dependence of teleconnection between the North Atlantic Oscillation in February and the Tibetan Plateau in March

Li, J., Li,, He, S., Wang, H., Orsolini, Y.J. 2021: The Atlantic Multidecadal Variability Phase Dependence of Teleconnection between the North Atlantic Oscillation in February and the Tibetan Plateau in March. J. Clim. https://doi.org/10.1175/JCLI-D-20-0157.1 .

Summary: The Tibetan Plateau (TP), referred to as the “Asian water tower,” contains one of the largest land ice masses on Earth. The local glacier shrinkage and frozen-water storage are strongly affected by variations in surface air temperature over the TP (TPSAT), especially in springtime. This study reveals that the relationship between the February North Atlantic Oscillation (NAO) and March TPSAT is unstable with time and regulated by the phase of the Atlantic multidecadal variability (AMV). The significant out-of-phase connection occurs only during the warm phase of AMV (AMV+). The results show that during the AMV+, the negative phase of the NAO persists from February to March, and is accompanied by a quasi-stationary Rossby wave train trapped along a northward-shifted subtropical westerly jet stream across Eurasia, inducing an anomalous adiabatic descent that warms the TP. However, during the cold phase of the AMV, the negative NAO cannot persist into March. The Rossby wave train propagates along the well-separated polar and subtropical westerly jets, and the NAO–TPSAT connection is broken. Further investigation suggests that the enhanced synoptic eddy and low-frequency flow (SELF) interaction over the North Atlantic in February and March during the AMV+, caused by the southward-shifted storm track, helps maintain the NAO pattern via positive eddy feedback. This study provides a new detailed perspective on the decadal variability of the North Atlantic–TP connection in late winter to early spring.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Mechanisms of decadal North Atlantic climate variability and implications for the recent cold anomaly

Arthun, M., Wills, R. C. J., Johnson, H. L., Chafik, L., Langehaug, H. R. 2020: Mechanisms of decadal North Atlantic climate variability and implications for the recent cold anomaly. J Clim, 1-52. https://doi.org/10.1175/JCLI-D-20-0464.1 .
Summary: Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

The Arctic Mediterranean In Interacting Climates of Ocean Basins Observations, Mechanisms, Predictability, and Impacts

Eldevik, T., Smedsrud, L.H., Li, C., Årthun, M., Madonna, E., Svendsen, L. 2020: The Arctic Mediterranean. In: Mechoso (Ed.). Interacting Climates of Ocean Basins Observations, Mechanisms, Predictability, and Impacts. Cambridge University Press, 2020, 186-215 . https://doi.org/10.1017/9781108610995.007 .
Summary: The Arctic Mediterranean sits on the “top of the world” and connects the Atlantic and Pacific climate realms via the cold Arctic. It is the combined basin of the Nordic Seas (the Norwegian, Iceland, and Greenland seas) and the Arctic Ocean confined by the Arctic land masses – thus making it a Mediterranean ocean (Figure 6.1; e.g., Aagaard et al., 1985). The Arctic Mediterranean is small for a World Ocean but its heat loss and freshwater uptake is disproportionally large (e.g., Ganachaud and Wunsch, 2000; Eldevik and Nilsen, 2013; Haine et al., 2015). With the combined presence of the Gulf Stream’s northern limb, regional freshwater stratification, and a retreating sea-ice cover, it is likely where water mass contrasts, shifting air-ocean-ice interaction, and climate change are most pronounced in the present world oceans (Stocker et al., 2013; Vihma, 2014).

You are most welcome to contact us or the corresponding author(s) directly, if you have questions.