Category: PublicationsRA1

Surface-Forced Variability in the Nordic Seas Overturning Circulation and Overflows

Årthun, M. 2023: Surface-Forced Variability in the Nordic Seas Overturning Circulation and Overflows. Geophys Res Lett. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023GL104158

Summary: Water mass transformation in the Nordic Seas and the associated overflow of dense waters across the Greenland-Scotland Ridge (GSR) acts to maintain the lower limb of the Atlantic meridional overturning circulation. Here, we use ocean and atmospheric reanalysis to assess the temporal variability in the Nordic Seas overturning circulation between 1950 and 2020 and its relation to surface buoyancy forcing. We find that variable surface-forced transformation of Atlantic waters in the eastern Nordic Seas can explain variations in overflow transport across the GSR. The production of dense water masses in the Greenland and Iceland Seas is of minor importance to overflow variability. The Nordic Seas overturning circulation shows pronounced multidecadal variability that is in phase with the Atlantic Multidecadal Variability (AMV) index, but no long-term trend. As the AMV is currently transitioning into its negative phase, the next decades could see a decreased overflow from the Nordic Seas.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Key physical processes and their model representation for projecting climate impacts on subarctic Atlantic net primary production: A synthesis

Myksvoll, M. S., Sandø, A. B., Tjiputra, J., Samuelsen, A., Çağlar Yumruktepe, V., Li, C., Mousing, E. A., Bettencourt, J.P.H., Ottersen, G. 2023: Key physical processes and their model representation for projecting climate impacts on subarctic atlantic net primary production: A synthesis. Progress in Oceanography. https://doi.org/10.1016/j.pocean.2023.103084

Summary: Oceanic net primary production forms the foundation of marine ecosystems. Understanding the impact of climate change on primary production is therefore critical and we rely on Earth System Models to project future changes. Stemming from their use of different physical dynamics and biogeochemical processes, these models yield a large spread in long-term projections of change on both the global and regional scale. Here we review the key physical processes and biogeochemical parameterizations that influence the estimation of primary production in Earth System Models and synthesize the available projections of productivity in the subarctic regions of the North Atlantic. The key processes and modelling issues we focus on are mixed layer depth dynamics, model resolution and the complexity and parameterization of biogeochemistry. From the model mean of five CMIP6 models, we found a large increase in PP in areas where the sea ice retreats throughout the 21st century. Stronger stratification and declining MLD in the Nordic Seas, caused by sea ice loss and regional freshening, reduce the vertical flux of nutrients into the photic zone. Following the synthesis of the primary production among the CMIP6 models, we recommend a number of measures: constraining model hindcasts through the assimilation of high-quality long-term observational records to improve physical and biogeochemical parameterizations in models, developing better parameterizations for the sub-grid scale processes, enhancing the model resolution, downscaling and multi-model comparison exercises for improved regional projections of primary production.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Pacific oceanic front amplifies the impact of Atlantic oceanic front on North Atlantic blocking

Cheung, HN., Omrani, NE., Ogawa, F., Keenlyside, N., Nakamura, H., Zhou, W. 2023: Pacific oceanic front amplifies the impact of Atlantic oceanic front on North Atlantic blocking. npj Clim Atmos Sci 6, 61. https://doi.org/10.1038/s41612-023-00370-x

Summary: Atmospheric blocking is a crucial driver of extreme weather events, but its climatological frequency is largely underestimated in state-of-the-art climate models, especially around the North Atlantic. While air-sea interaction along the North Atlantic oceanic frontal region is known to influence Atlantic blocking activity, remote effects from the Pacific have been less studied. Here we use semi-idealised experiments with an atmospheric general circulation model to demonstrate that the mid-latitude Pacific oceanic front is crucial for climatological Atlantic blocking activity. The front intensifies the Pacific eddy-driven jet that extends eastward towards the North Atlantic. The eastward-extended Pacific jet reinforces the North Atlantic circulation response to the Atlantic oceanic front, including the storm track activity and the eddy-driven jet. The strengthening of the eddy-driven jet reduces the Greenland blocking frequency. Moreover, the Pacific oceanic front greatly strengthens the stationary planetary-scale ridge in Europe. Together with a stronger northeastward extension of the Atlantic storm track, enhanced interaction between extratropical cyclones and the European ridge favours the occurrence of Euro-Atlantic blocking. Therefore, the North Atlantic circulation response amplified remotely by the Pacific oceanic front substantially increases Euro-Atlantic blocking frequency while decreasing Greenland blocking frequency.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Ocean–atmosphere interaction at the Gulf Stream sea surface temperature front: variability and impacts on midlatitude atmospheric circulation (PhD thesis)

Luca Famooss-Paolini (2023-05-26): Ocean–atmosphere interaction at the Gulf Stream sea surface temperature front: variability and impacts on midlatitude atmospheric circulation. PhD thesis, Ca’ Foscari University, Italy. http://hdl.handle.net/10579/25044 .

Summary: Recent studies show that the Gulf Stream Front (GSF) is an essential ingredient of the Northern Hemisphere climate. However, the nature of the air-ocean interaction associated with the GSF variability is not understood. This thesis first analyses the atmospheric response to the meridional slip of the GSF and its dependence on model resolution, using multi-model atmospheric simulations and the ERA5 reanalysis. Finally, the thesis analyses the spectral features of the NAO-GSF interaction and the mechanisms through which the NAO forces the GSF slip, using atmospheric and oceanic reanalyses. Regarding the first point, the results show that the GSF slip induces local diabatic heat anomalies that are mainly balanced by the vertical motion and meridional transport of transient eddy streams. On the large scale, the GSF slip is associated with the homo-directional slip of the eddy-driven jet and the storm-track. However, the atmospheric response is dependent on model resolution. Only those with a resolution higher than 50 km reproduce a response similar to the observed anomalies. Regarding the second point, the results show that the NAO and the meridional position of the GSF covary on the decadal scale, but only during 1972-2018. The non-stationarity of this decadal covariability is also shown by the time dependence of their lead-lag relationship. The lag between the NAO and the GSF response on the decadal scale can be interpreted as the effect of several mechanisms. However, not all of them are stationary. There is evidence of Rossby wave propagation only before 1990, which can explain the time dependence of the NAO-GSF lead-lag relationship..

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Future strengthening of the Nordic Seas overturning circulation

Årthun, M., Asbjørnsen, H., Chafik, L., Johnson, H.L., Våge, K. 2023: Future strengthening of the Nordic Seas overturning circulation. Nat Commun. https://www.nature.com/articles/s41467-023-37846-6

Summary: The overturning circulation in the Nordic Seas involves the transformation of warm Atlantic waters into cold, dense overflows. These overflow waters return to the North Atlantic and form the headwaters to the deep limb of the Atlantic meridional overturning circulation (AMOC). The Nordic Seas are thus a key component of the AMOC. However, little is known about the response of the overturning circulation in the Nordic Seas to future climate change. Here we show using global climate models that, in contrast to the North Atlantic, the simulated density-space overturning circulation in the Nordic Seas increases throughout most of the 21st century as a result of enhanced horizontal circulation and a strengthened zonal density gradient. The increased Nordic Seas overturning is furthermore manifested in the overturning circulation in the eastern subpolar North Atlantic. A strengthened Nordic Seas overturning circulation could therefore be a stabilizing factor in the future AMOC.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Rapid sea ice changes in the future Barents Sea

Rieke, O., Årthun, M., Dörr, J.S. 2023: Rapid sea ice changes in the future Barents Sea. The Cryosphere. https://doi.org/10.5194/tc-17-1445-2023

Summary: Observed and future winter Arctic sea ice loss is strongest in the Barents Sea. However, the anthropogenic signal of the sea ice decline is superimposed by pronounced internal variability that represents a large source of uncertainty in future climate projections. A notable manifestation of internal variability is rapid ice change events (RICEs) that greatly exceed the anthropogenic trend. These RICEs are associated with large displacements of the sea ice edge which could potentially have both local and remote impacts on the climate system. In this study we present the first investigation of the frequency and drivers of RICEs in the future Barents Sea, using multi-member ensemble simulations from CMIP5 and CMIP6. A majority of RICEs are triggered by trends in ocean heat transport or surface heat fluxes. Ice loss events are associated with increasing trends in ocean heat transport and decreasing trends in surface heat loss. RICEs are a common feature of the future Barents Sea until the region becomes close to ice-free. As their evolution over time is closely tied to the average sea ice conditions, rapid ice changes in the Barents Sea may serve as a precursor for future changes in adjacent seas.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

ENSO teleconnections in terms of non-NAO and NAO atmospheric variability

King, M.P., Keenlyside, N., Li, C. 2023: ENSO teleconnections in terms of non-NAO and NAO atmospheric variability. Clim Dyn. https://doi.org/10.1007/s00382-023-06697-8

Summary: The validity of the long-held understanding or assumption that El Niño-Southern Oscillation (ENSO) has a remote influence on the North Atlantic Oscillation (NAO) in the January–February–March (JFM) months has been questioned recently. We examine this claim further using atmospheric data filtered to separate the variability orthogonal and parallel to NAO. This decomposition of the atmospheric fields is based on the Principal Component/Empirical Orthogonal Function method whereby the leading mode of the sea-level pressure in the North Atlantic sector is recognised as the NAO, while the remaining variability is orthogonal (unrelated) to NAO. Composite analyses indicate that ENSO has statistically significant links with both the non-NAO and NAO variability at various atmospheric levels. Additional bootstrap tests carried out to quantify the uncertainty and statistical significance confirm these relationships. Consistent with previous studies, we find that an ENSO teleconnection in the NAO-related variability is characterised by lower-stratospheric eddy heat flux anomalies (related to the vertical propagation of planetary waves) which appear in November–December and strengthen through JFM. Under El Niño (La Niña), there is constructive (destructive) interference of anomalous eddy heat flux with the climatological pattern, enhancing (reducing) fluxes over the northern Pacific and Barents Sea areas. We further show that the teleconnection of extreme El Niño is essentially a non-NAO phenomenon. Some non-linearity of the teleconnections is suggested, with El Niño including more NAO-related variability than La Niña, but the statistical significance is degraded due to weaker signals and smaller sample sizes after the partitioning. Our findings have implications for the general understanding of the nature of ENSO teleconnections over the North Atlantic, as well as for refining methods to characterise and evaluate them in models.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Thermohaline patterns of intrinsic Atlantic Multidecadal Variability

Zanchettin, D., Fang, S.-W., Khodri, M., Omrani, N.-E., Rubinetti, S., Rubino, A., Timmreck, C., Jungclaus, J.-H. 2023: Thermohaline patterns of intrinsic Atlantic Multidecadal Variability. Clim Dyn. https://link.springer.com/article/10.1007/s00382-023-06679-w

Summary: A vivid scientific debate exists on the nature of the Atlantic Multidecadal Variability (AMV) as an intrinsic rather than predominantly forced climatic phenomenon, and on the role of ocean circulation. Here, we use a multi-millennial unperturbed control simulation and a Holocene simulation with slow-varying greenhouse gas and orbital forcing performed with the low-resolution version of the Max Planck Institute Earth System Model to illustrate thermohaline conditions associated with twelve events of strong AMV that are comparable, in the surface anomalies, to observations in their amplitudes (~ 0.3 °C) and periods (~ 80 years). The events are associated with recurrent yet spatially diverse same-sign anomalous sea-surface temperature and salinity fields that are substantially symmetric in the warm-to-cold and following cold-to-warm transitions and only partly superpose with the long-term spatial AMV pattern. Subpolar cold-fresh anomalies develop in the deep layers during the peak cold phase of strong AMV events, often in association with subtropical warm-salty anomalies yielding a meridional dipole pattern. The Atlantic meridional overturning circulation (AMOC) robustly weakens during the warm-to-cold transition of a strong AMV event and recovers thereafter, with surface salinity anomalies being potential precursors of such overturning changes. A Holocene simulation with the same model including volcanic forcing can disrupt the intrinsic AMV–AMOC connection as post-eruption periods often feature an AMOC strengthening forced by the volcanically induced surface cooling. Overall, our results support the AMV as a potential intrinsic feature of climate, whose episodic strong anomalous events can display different shades of spatial patterns and timings for the warm-to-cold and subsequent cold-to-warm transitions. Attribution of historical AMV fluctuations thus requires full consideration of the associated surface and subsurface thermohaline conditions and assessing the AMOC–AMV relation.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Riverine impact on future projections of marine primary production and carbon uptake

Gao, S., Schwinger, J., Tjiputra, J., Bethke, I., Hartmann, J., Mayorga, E., Heinze, C. 2023: Riverine impact on future projections of marine primary production and carbon uptake. Biogeosciences. https://doi.org/10.5194/bg-20-93-2023

Summary: Riverine transport of nutrients and carbon from inland waters to the coastal and finally the open ocean alters marine primary production (PP) and carbon (C) uptake regionally and globally. So far, this process has not been fully represented and evaluated in the state-of-the-art Earth system models. Here we assess changes in marine PP and C uptake projected under the Representative Concentration Pathway 4.5 climate scenario using the Norwegian Earth system model, with four riverine transport configurations for nutrients (nitrogen, phosphorus, silicon, and iron), carbon, and total alkalinity: deactivated, fixed at a recent-past level, coupled to simulated freshwater runoff, and following four plausible future scenarios. The inclusion of riverine nutrients and carbon at the 1970 level improves the simulated contemporary spatial distribution of annual mean PP and air–sea CO2 fluxes relative to observations, especially on the continental margins (5.4 % reduction in root mean square error (RMSE) for PP) and in the North Atlantic region (7.4 % reduction in RMSE for C uptake). While the riverine nutrients and C input is kept constant, its impact on projected PP and C uptake is expressed differently in the future period from the historical period. Riverine nutrient inputs lessen nutrient limitation under future warmer conditions as stratification increases and thus lessen the projected decline in PP by up to 0.66 ± 0.02 Pg C yr−1 (29.5 %) globally, when comparing the 1950–1999 with the 2050–2099 period. The riverine impact on projected C uptake depends on the balance between the net effect of riverine-nutrient-induced C uptake and riverine-C-induced CO2 outgassing. In the two idealized riverine configurations the riverine inputs result in a weak net C sink of 0.03–0.04 ± 0.01 Pg C yr−1, while in the more plausible riverine configurations the riverine inputs cause a net C source of 0.11 ± 0.03 Pg C yr−1. It implies that the effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projections of ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver. The results are subject to model limitations related to resolution and process representations that potentially cause underestimation of impacts. High-resolution global or regional models with an adequate representation of physical and biogeochemical shelf processes should be used to assess the impact of future riverine scenarios more accurately.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Weakening of the Atlantic Niño variability under global warming

Crespo, L.R., Prigent, A., Keenlyside, N., Koseki, S., Svendsen, L., Richter, I., Sánchez-Gómez, E. 2022: Weakening of the Atlantic Niño variability under global warming. Nat. Clim. Chang. https://doi.org/10.1038/s41558-022-01453-y

Summary: The Atlantic Niño is one of the most important patterns of interannual tropical climate variability, but how climate change will influence this pattern is not well known due to large climate model biases. Here we show that state-of-the-art climate models robustly predict a weakening of Atlantic Niños in response to global warming, mainly due to a decoupling of subsurface and surface temperature variations as the upper equatorial Atlantic Ocean warms. This weakening is predicted by most (>80%) models in the Coupled Model Intercomparison Project Phases 5 and 6 under the highest emission scenarios. Our results indicate a reduction in variability by the end of the century by 14%, and as much as 24–48% when accounting for model errors using a simple emergent constraint analysis. Such a weakening of Atlantic Niño variability will potentially impact climate conditions and the skill of seasonal predictions in many regions.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.