Tag: olsen

Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect

Irvalı, N., Ninnemann, U.S., Olsen, A., Rose, N.L., Thornalley, D.J., Mjell, T.L., Counillon, F. 2024: Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect. Geochronology. https://doi.org/10.5194/gchron-6-449-2024

Summary: Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Overlapping with instrumental records, they hold the potential to elucidate natural variability and contextualize current changes. Yet, dating uncertainties of traditional approaches (e.g., up to ± 30–50 years for the last 2 centuries) pose major challenges for integrating the shorter instrumental records with these extended marine archives. Hence, robust sediment chronologies are crucial, and most existing age model constraints do not provide sufficient age control, particularly for the 20th century, which is the most critical period for comparing proxy records to historical changes. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles to reduce age model uncertainties in high-resolution marine archives. As a test, we apply this new approach to a marine sediment core located at the Gardar Drift, in the subpolar North Atlantic, and revise the previously published age model for this site. We further provide a refined estimate of regional reservoir corrections and uncertainties for Gardar Drift.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Phytoplankton abundance in the Barents Sea is predictable up to five years in advance

Fransner, F., Olsen, A., Årthun, M., Counillon, F., Tjiputra, J., Samuelsen, A., Keenlyside, N. 2023: Phytoplankton abundance in the Barents Sea is predictable up to five years in advance. Commun Earth Environ. https://doi.org/10.1038/s43247-023-00791-9

Summary: The Barents Sea is a highly biologically productive Arctic shelf sea with several commercially important fish stocks. Interannual-to-decadal predictions of its ecosystem would therefore be valuable for marine resource management. Here, we demonstrate that the abundance of phytoplankton, the base of the marine food web, can be predicted up to five years in advance in the Barents Sea with the Norwegian Climate Prediction Model. We identify two different mechanisms giving rise to this predictability; 1) in the southern ice-free Atlantic Domain, skillful prediction is a result of the advection of waters with anomalous nitrate concentrations from the Subpolar North Atlantic; 2) in the northern Polar Domain, phytoplankton predictability is a result of the skillful prediction of the summer ice concentration, which influences the light availability. The skillful prediction of the phytoplankton abundance is an important step forward in the development of numerical ecosystem predictions of the Barents Sea.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Ocean Biogeochemical Predictions—Initialization and Limits of Predictability

Fransner, F., Counillon, F., Bethke, I., Tjiputra, J., Samuelsen, A., Nummelin, A., Olsen, A. 2020: Ocean Biogeochemical Predictions—Initialization and Limits of Predictability. Front Mar Sci. https://doi.org/10.3389/fmars.2020.00386 .

Summary: Predictions of ocean biogeochemistry, such as primary productivity and CO2 uptake, would help to understand the changing marine environment and the global climate. There is an emerging number of studies where initialization of ocean physics has led to successful predictions of ocean biogeochemistry. It is, however, unclear how much these predictions could be improved by also assimilating biogeochemical data to reduce uncertainties of the initial conditions. Further, the mechanisms that lead to biogeochemical predictability are poorly understood. Here we perform a suite of idealized twin experiments with an Earth System Model (ESM) with the aim to (i) investigate the role of biogeochemical tracers’ initial conditions on their predictability, and (ii) understand the physical processes that give rise to, or limit, predictability of ocean carbon uptake and export production. Our results suggest that initialization of the biogeochemical state does not significantly improve interannual-to-decadal predictions, which we relate to the strong control ocean physics exerts on the biogeochemical variability on these time scales. The predictability of ocean carbon uptake generally agrees well with the predictability of the mixed layer depth (MLD), suggesting that the predictable signal comes from the exchange of dissolved inorganic carbon (DIC) with deep-waters. The longest predictability is found in winter in at high latitudes, as for sea surface temperature and salinity, but the predictability of the MLD and carbon exchange is lower as it is more directly influenced by the atmospheric variability, e.g., the wind. The predictability of the annual mean export production is, on the contrary, nearly non-existing at high latitudes, despite the strong predictive skill for annual mean nutrient concentrations in these regions. This is related to the low predictability of the physical state of the summer surface ocean. Due to the shallow mixed layer it is decoupled from the ocean below and therefore strongly influenced by the chaotic atmosphere. Our results show that future studies need to target the predictability of the mixed layer to get a better understanding of the real-world predictability of ocean biogeochemistry.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.