Pecnjak, Martin (2021-08-05). Understanding the dynamics of recent Norwegian extreme weather events and their influence on energy production (Master’s thesis, University of Bergen, Bergen, Norway). https://bora.uib.no/bora-xmlui/handle/11250/2778409 .
Summary: The growing frequency and severity of extreme weather events in the Northern Hemisphere has prompted a lot of research being done on their origin and physical mechanisms. Both simplified and complex approaches have been introduced in defining and understanding these events, where they look into high-amplitude quasi-stationary Rossby waves and their quasi-resonant amplification. However, different approaches exist to investigating extreme events and these were just a motivation for this thesis. Since the resonance method is suit- able mostly for summer events and the events discussed in this thesis have happened in all seasons, a different approach was needed. The events in question were a winter drought, two summer and autumn floods, a winter snowfall and a spring/summer heatwave in the areas of south and southwestern Norway. In order to detect certain features which would help solve this issue, we look into anomalies of different meteorological variables such as geopoten- tial height, surface temperature, precipitation and snowfall rate and zonal and meridional winds. Deep and thorough statistical and dynamical analyses are applied to define the out- comes and the physical origins which would help us obtain a clear picture on the whole case. The finite-amplitude local wave activity (LWA) diagnostic, as a measure of the meandering of the jet stream, has helped to give a clear picture along with the large-scale circulation. This method can be used as a proxy for the strength of the eddy-driven jet and the storm track. It has proven to be the key factor in defining what has exactly caused the events in ques- tion. The results and findings have shown that the LWA is a conclusive tool in determining whether an extreme event was related to a blocking pattern or not, while the LWA budget equation components have shed light on the so far poorly understood dynamical aspects which led to the events. The zonal LWA flux has proven to be a good predictor of blocking with its onset in the early stages of the events, similar to the traffic jam concept introduced by (Nakamura and Huang, 2018). The jet stream has a capacity for the LWA flux similar to how a highway has a capacity for the number of vehicles on it. If the capacity is exceeded, blocking occurs, and this is readily shown in the results and findings of this work. As for the budget equation components, the zonal LWA flux convergence has proven to be the key in maintaining the increase of the LWA as well as also having an early onset in each blocking event in agreement with the LWA flux. On the other hand, the residual in the LWA budget, which represents the non-conservative small-scale processes (diabatic sources and sinks of LWA), dampens the LWA. The LWA method has also proven to be useful in all seasons. The motivation for the thesis also came from the influence of the events on the meteorological variables related to the Norwegian energy production. The results show us clues into possible ways of improving forecasting of such events and minimizing their harmful impacts. They also show possibilities in improving energy management, infrastructure, allocation of resources and preparedness of the society for damages and hazards caused by the events. This was not fully investigated in this thesis and is the next step in the research of this topic.
Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.