Category: PublicationsRA2

Benefit of vertical localization for sea surface temperature assimilation in isopycnal coordinate model

Wang, Y., Counillon, F., Barthélémy, S., Barth, A. 2022: Benefit of vertical localization for sea surface temperature assimilation in isopycnal coordinate model. Front Clim. https://doi.org/10.3389/fclim.2022.918572

Summary: Sea surface temperature (SST) observations are a critical data set for long-term climate reconstruction. However, their assimilation with an ensemble-based data assimilation method can degrade performance in the ocean interior due to spurious covariances. Assimilation in isopycnal coordinates can delay the degradation, but it remains problematic for long reanalysis. We introduce vertical localization for SST assimilation in the isopycnal coordinate. The tapering functions are formulated empirically from a large pre-industrial ensemble. We propose three schemes: 1) a step function with a small localization radius that updates layers from the surface down to the first layer for which insignificant correlation with SST is found, 2) a step function with a large localization radius that updates layers down to the last layer for which significant correlation with SST is found, and 3) a flattop smooth tapering function. These tapering functions vary spatially and with the calendar month and are applied to isopycnal temperature and salinity. The impact of vertical localization on reanalysis performance is tested in identical twin experiments within the Norwegian Climate Prediction Model (NorCPM) with SST assimilation over the period 1980–2010. The SST assimilation without vertical localization greatly enhances performance in the whole water column but introduces a weak degradation at intermediate depths (e.g., 2,000–4,000 m). Vertical localization greatly reduces the degradation and improves the overall accuracy of the reanalysis, in particular in the North Pacific and the North Atlantic. A weak degradation remains in some regions below 2,000 m in the Southern Ocean. Among the three schemes, scheme 2) outperforms schemes 1) and 3) for temperature and salinity.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Basin Interactions and Predictability. In: Interacting Climates of Ocean Basins: Observations, Mechanisms, Predictability, and Impacts

Keenlyside, N., Y. Kosaka, N. Vigaud, A. Robertson, Y. Wang, D. Dommenget, J.-J. Luo, and D. Matei. 2020: Basin Interactions and Predictability, In: Mechoso (Ed.). Interacting Climates of Ocean Basins Observations, Mechanisms, Predictability, and Impacts. Cambridge University Press, 2020, 258-292 .
Summary: The general public is familiar with weather forecasts and their utility, and the field of weather forecasting is well-established. Even the theoretical limit of the weather forecasting – two weeks – is known. In contrast, familiarity with climate prediction is low outside of the research field, the theoretical basis is not fully established, and we do not know the extent to which climate can be predicted. Variations in climate, however, can have large societal and economic consequences, as they can lead to droughts and floods, and spells of extreme hot and cold weather. Thus, improving our capabilities to predict climate is important and urgent, as it can enhance climate services and thereby contribute to the sustainable development of humans in this era of climate change.

Link to chapter. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Relating model bias and prediction skill in the equatorial Atlantic

Counillon, F., Keenlyside, N., Toniazzo, T., Koseki, K., Demissie, T., Bethke, I., Wang, Y. 2021: Relating model bias and prediction skill in the equatorial Atlantic. Climate Dynamics. https://doi.org/10.1007/s00382-020-05605-8

For a nice overview of the article, check out this news piece by our partner NERSC, also involved in our collaborative projects TRIATLAS and STERCP.

Summary: We investigate the impact of large climatological biases in the tropical Atlantic on reanalysis and seasonal prediction performance using the Norwegian Climate Prediction Model (NorCPM) in a standard and an anomaly coupled configuration. Anomaly coupling corrects the climatological surface wind and sea surface temperature (SST) fields exchanged between oceanic and atmospheric models, and thereby significantly reduces the climatological model biases of precipitation and SST. NorCPM combines the Norwegian Earth system model with the ensemble Kalman filter and assimilates SST and hydrographic profiles. We perform a reanalysis for the period 1980–2010 and a set of seasonal predictions for the period 1985–2010 with both model configurations. Anomaly coupling improves the accuracy and the reliability of the reanalysis in the tropical Atlantic, because the corrected model enables a dynamical reconstruction that satisfies better the observations and their uncertainty. Anomaly coupling also enhances seasonal prediction skill in the equatorial Atlantic to the level of the best models of the North American multi-model ensemble, while the standard model is among the worst. However, anomaly coupling slightly damps the amplitude of Atlantic Niño and Niña events. The skill enhancements achieved by anomaly coupling are largest for forecast started from August and February. There is strong spring predictability barrier, with little skill in predicting conditions in June. The anomaly coupled system show some skill in predicting the secondary Atlantic Niño-II SST variability that peaks in November–December from August 1st.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

North Atlantic climate far more predictable than models imply

Smith, D.M., Scaife, A.A., Eade, R. et al. 2020: North Atlantic climate far more predictable than models imply. Nature. https://doi.org/10.1038/s41586-020-2525-0 .

Summary: Quantifying signals and uncertainties in climate models is essential for the detection, attribution, prediction and projection of climate change1,2,3. Although inter-model agreement is high for large-scale temperature signals, dynamical changes in atmospheric circulation are very uncertain4. This leads to low confidence in regional projections, especially for precipitation, over the coming decades5,6. The chaotic nature of the climate system7,8,9 may also mean that signal uncertainties are largely irreducible. However, climate projections are difficult to verify until further observations become available. Here we assess retrospective climate model predictions of the past six decades and show that decadal variations in North Atlantic winter climate are highly predictable, despite a lack of agreement between individual model simulations and the poor predictive ability of raw model outputs. Crucially, current models underestimate the predictable signal (the predictable fraction of the total variability) of the North Atlantic Oscillation (the leading mode of variability in North Atlantic atmospheric circulation) by an order of magnitude. Consequently, compared to perfect models, 100 times as many ensemble members are needed in current models to extract this signal, and its effects on the climate are underestimated relative to other factors. To address these limitations, we implement a two-stage post-processing technique. We first adjust the variance of the ensemble-mean North Atlantic Oscillation forecast to match the observed variance of the predictable signal. We then select and use only the ensemble members with a North Atlantic Oscillation sufficiently close to the variance-adjusted ensemble-mean forecast North Atlantic Oscillation. This approach greatly improves decadal predictions of winter climate for Europe and eastern North America. Predictions of Atlantic multidecadal variability are also improved, suggesting that the North Atlantic Oscillation is not driven solely by Atlantic multidecadal variability. Our results highlight the need to understand why the signal-to-noise ratio is too small in current climate models10, and the extent to which correcting this model error would reduce uncertainties in regional climate change projections on timescales beyond a decade.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model.

Brajard, J., Carrassi, A., Bocquet, M., Bertino, L. 2020: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model. Geoscientific Model Development. https://doi.org/10.1016/j.jocs.2020.101171 .

Summary: A novel method, based on the combination of data assimilation and machine learning is introduced. The new hybrid approach is designed for a two-fold scope: (i) emulating hidden, possibly chaotic, dynamics and (ii) predicting their future states. The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network. Data assimilation is used to optimally combine a surrogate model with sparse noisy data. The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model. The two steps are then repeated iteratively. Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach. The surrogate model shows short-term forecast skill up to two Lyapunov times, the retrieval of positive Lyapunov exponents as well as the more energetic frequencies of the power density spectrum. The sensitivity of the method to critical setup parameters is also presented: the forecast skill decreases smoothly with increased observational noise but drops abruptly if less than half of the model domain is observed. The successful synergy between data assimilation and machine learning, proven here with a low-dimensional system, encourages further investigation of such hybrids with more sophisticated dynamics.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Ocean Biogeochemical Predictions—Initialization and Limits of Predictability

Fransner, F., Counillon, F., Bethke, I., Tjiputra, J., Samuelsen, A., Nummelin, A., Olsen, A. 2020: Ocean Biogeochemical Predictions—Initialization and Limits of Predictability. Front Mar Sci. https://doi.org/10.3389/fmars.2020.00386 .

Summary: Predictions of ocean biogeochemistry, such as primary productivity and CO2 uptake, would help to understand the changing marine environment and the global climate. There is an emerging number of studies where initialization of ocean physics has led to successful predictions of ocean biogeochemistry. It is, however, unclear how much these predictions could be improved by also assimilating biogeochemical data to reduce uncertainties of the initial conditions. Further, the mechanisms that lead to biogeochemical predictability are poorly understood. Here we perform a suite of idealized twin experiments with an Earth System Model (ESM) with the aim to (i) investigate the role of biogeochemical tracers’ initial conditions on their predictability, and (ii) understand the physical processes that give rise to, or limit, predictability of ocean carbon uptake and export production. Our results suggest that initialization of the biogeochemical state does not significantly improve interannual-to-decadal predictions, which we relate to the strong control ocean physics exerts on the biogeochemical variability on these time scales. The predictability of ocean carbon uptake generally agrees well with the predictability of the mixed layer depth (MLD), suggesting that the predictable signal comes from the exchange of dissolved inorganic carbon (DIC) with deep-waters. The longest predictability is found in winter in at high latitudes, as for sea surface temperature and salinity, but the predictability of the MLD and carbon exchange is lower as it is more directly influenced by the atmospheric variability, e.g., the wind. The predictability of the annual mean export production is, on the contrary, nearly non-existing at high latitudes, despite the strong predictive skill for annual mean nutrient concentrations in these regions. This is related to the low predictability of the physical state of the summer surface ocean. Due to the shallow mixed layer it is decoupled from the ocean below and therefore strongly influenced by the chaotic atmosphere. Our results show that future studies need to target the predictability of the mixed layer to get a better understanding of the real-world predictability of ocean biogeochemistry.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Seasonal to decadal predictions of regional Arctic sea ice by assimilating sea surface temperature in the Norwegian Climate Prediction Model

Dai, P., Gao, Y., Counillon, F., Wang, Y., Kimmritz, M., Langehaug, H.R. 2020: Seasonal to decadal predictions of regional Arctic sea ice by assimilating sea surface temperature in the Norwegian Climate Prediction Model. Clim Dyn 54, 3863–3878. https://doi.org/10.1007/s00382-020-05196-4 .

Summary: The version of the Norwegian Climate Prediction Model (NorCPM) that only assimilates sea surface temperature (SST) with the Ensemble Kalman Filter has been used to investigate the seasonal to decadal prediction skill of regional Arctic sea ice extent (SIE). Based on a suite of NorCPM retrospective forecasts, we show that seasonal prediction of pan-Arctic SIE is skillful at lead times up to 12 months, which outperforms the anomaly persistence forecast. The SIE skill varies seasonally and regionally. Among the five Arctic marginal seas, the Barents Sea has the highest SIE prediction skill, which is up to 10–11 lead months for winter target months. In the Barents Sea, the skill during summer is largely controlled by the variability of solar heat flux and the skill during winter is mostly constrained by the upper ocean heat content/SST and also related to the heat transport through the Barents Sea Opening. Compared with several state-of-the-art dynamical prediction systems, NorCPM has comparable regional SIE skill in winter due to the improved upper ocean heat content. The relatively low skill of summer SIE in NorCPM suggests that SST anomalies are not sufficient to constrain summer SIE variability and further assimilation of sea ice thickness or atmospheric data is expected to increase the skill.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

On Temporal Scale Separation in Coupled Data Assimilation with the Ensemble Kalman Filter

Tondeur, M., Carrassi, A., Vannitsem, S., Bocquet, M. 2020: On Temporal Scale Separation in Coupled Data Assimilation with the Ensemble Kalman Filter. J Stat Phys 179, 1161–1185. https://doi.org/10.1007/s10955-020-02525-z .

Summary: Data assimilation for systems possessing many scales of motions is a substantial methodological and technological challenge. Systems with these features are found in many areas of computational physics and are becoming common thanks to increased computational power allowing to resolve finer scales and to couple together several sub-components. Coupled data assimilation (CDA) distinctively appears as a main concern in numerical weather and climate prediction with major efforts put forward by meteo services worldwide. The core issue is the scale separation acting as a barrier that hampers the propagation of the information across model components (e.g. ocean and atmosphere). We provide a brief survey of CDA, and then focus on CDA using the ensemble Kalman filter (EnKF), a widely used Monte Carlo Gaussian method. Our goal is to elucidate the mechanisms behind information propagation across model components. We consider first a coupled system of equations with temporal scale difference, and deduce that: (i) cross components effects are strong from the slow to the fast scale, but, (ii) intra-component effects are much stronger in the fast scale. While observing the slow scale is desirable and benefits the fast, the latter must be observed with high frequency otherwise the error will grow up to affect the slow scale. Numerical experiments are performed using the atmosphere-ocean model, MAOOAM. Six configurations are considered, differing for the strength of the atmosphere-ocean coupling and/or the number of model modes. The performance of the EnKF depends on the model configuration, i.e. on its dynamical features. A comprehensive dynamical characterisation of the model configurations is provided by examining the Lyapunov spectrum, Kolmogorov entropy and Kaplan–Yorke attractor dimension. We also compute the covariant Lyapunov vectors and use them to explain how model instabilities act on different model’s modes according to the coupling strength. The experiments confirm the importance of observing the fast scale, but show also that, despite its slow temporal scale, frequent observations in the ocean are beneficial. The relation between the ensemble size, N, and the unstable subspace dimension, n0, has been studied. Results largely ratify what known for uncoupled system: the condition N≥n0 is necessary for the EnKF to work satisfactorily. Nevertheless the quasi-degeneracy of the Lyapunov spectrum of MAOOAM, with many near-zero exponents, is potentially the cause of the smooth gradual reduction of the analysis error observed for some model configurations, even when N>n0. Future prospects for the EnKF in the context of coupled ocean-atmosphere systems are finally discussed.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Assimilation of semi-qualitative sea ice thickness data with the EnKF-SQ: a twin experiment.

Shah, A., Bertino, L., Counillon, C., El Gharamti, M., Xie, J. 2019: Assimilation of semi-qualitative sea ice thickness data with the EnKF-SQ: a twin experiment. Tellus A: Dynamic Meteorology and Oceanography. https://doi.org/10.1080/16000870.2019.1697166

Summary: A newly introduced stochastic data assimilation method, the Ensemble Kalman Filter Semi-Qualitative (EnKF-SQ) is applied to a realistic coupled ice-ocean model of the Arctic, the TOPAZ4 configuration, in a twin experiment framework. The method is shown to add value to range-limited thin ice thickness measurements, as obtained from passive microwave remote sensing, with respect to more trivial solutions like neglecting the out-of-range values or assimilating climatology instead. Some known properties inherent to the EnKF-SQ are evaluated: the tendency to draw the solution closer to the thickness threshold, the skewness of the resulting analysis ensemble and the potential appearance of outliers. The experiments show that none of these properties prove deleterious in light of the other sub-optimal characters of the sea ice data assimilation system used here (non-linearities, non-Gaussian variables, lack of strong coupling). The EnKF-SQ has a single tuning parameter that is adjusted for best performance of the system at hand. The sensitivity tests reveal that the tuning parameter does not critically influence the results. The EnKF-SQ makes overall a valid approach for assimilating semi-qualitative observations into high-dimensional nonlinear systems.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Improving weather and climate predictions by training of supermodels.

Schevenhoven, F., F. Selten, A. Carrassi, Keenlyside, N. 2019: Improving weather and climate predictions by training of supermodels. Earth Syst. Dynam., 10, 789–807. https://doi.org/10.5194/esd-10-789-2019

Summary: Recent studies demonstrate that weather and climate predictions potentially improve by dynamically combining different models into a so-called “supermodel”. Here, we focus on the weighted supermodel – the supermodel’s time derivative is a weighted superposition of the time derivatives of the imperfect models, referred to as weighted supermodeling. A crucial step is to train the weights of the supermodel on the basis of historical observations. Here, we apply two different training methods to a supermodel of up to four different versions of the global atmosphere–ocean–land model SPEEDO. The standard version is regarded as truth. The first training method is based on an idea called cross pollination in time (CPT), where models exchange states during the training. The second method is a synchronization-based learning rule, originally developed for parameter estimation. We demonstrate that both training methods yield climate simulations and weather predictions of superior quality as compared to the individual model versions. Supermodel predictions also outperform predictions based on the commonly used multi-model ensemble (MME) mean. Furthermore, we find evidence that negative weights can improve predictions in cases where model errors do not cancel (for instance, all models are warm with respect to the truth). In principle, the proposed training schemes are applicable to state-of-the-art models and historical observations. A prime advantage of the proposed training schemes is that in the present context relatively short training periods suffice to find good solutions. Additional work needs to be done to assess the limitations due to incomplete and noisy data, to combine models that are structurally different (different resolution and state representation, for instance) and to evaluate cases for which the truth falls outside of the model class.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.