Goncalves Dos Passos, Leilane (2023-11-03): Arctic-Atlantic Climate Variability and Predictability in Observations and in a Dynamical Prediction System. PhD thesis, University of Bergen, Bergen, Norway. https://bora.uib.no/bora-xmlui/handle/11250/3099594
Summary: The major focus of this thesis is on understanding decadal climate predictability to improve climate models and their predictions. Climate predictions show promising results but are still facing challenges, especially in connecting the ocean and atmosphere. The ocean is the main source of predictability. The ocean’s capacity to store and release heat over long periods of time makes it a thermal memory of the climate system. In the Arctic-Atlantic region, ocean currents transport heat to polar areas, and along this path, the ocean releases the heat to the atmosphere through surface fluxes. From this interaction, both the ocean and the atmosphere change. On the one hand, as the ocean releases heat into the atmosphere, it cools down, increasing its density. The denser water eventually flows southward as part of the Atlantic Meridional Overturning Circulation (AMOC). On the other hand, the atmosphere being warmed by the ocean affects nearby land areas through the winds, influencing the climate variability of Western Europe.
This dynamic ocean-atmosphere interaction is a source of predictability in the Arctic-Atlantic region and is investigated here using observations and a dynamical prediction system, the Norwegian Climate Prediction Model (NorCPM). Dynamical prediction systems are useful tools for investigating and predicting climate variability on decadal timescales. Beginning their development in the early 2000s, these systems are currently the focus of significant efforts by the scientific community to provide operational decadal forecasts with reliable and accurate information. The research of this thesis is aligned with the development of NorCPM while also focusing on investigating key mechanisms that give rise to predictability in the Arctic-Atlantic region.
Climate predictions are initialized in different ways, which affects their performance. The first study of the thesis investigates the best initialization method for the Arctic-Atlantic region using NorCPM. Paper I finds that employing a more complex data assimilation method leads to the improved predictive skill of temperature and salinity in the Subpolar North Atlantic (SPNA) but not in the Norwegian Sea. The loss of skill in the Norwegian Sea is found in regions characterized by intense surface heat fluxes and eddy activity, such as the Norwegian and Lofoten Basins. The warm Atlantic water moving northwards from the SPNA to the Norwegian Sea carries thermohaline anomalies, and it is transformed from light-to-dense waters by surface forcing along the path. These two mechanisms are investigated in observation-based data in Paper II. Their relationship is analyzed, focusing on the decadal timescale in the eastern SPNA. Paper II finds that warm anomalies are associated with surface-forced water mass transformation in the light-density classes, while during cold anomalies, more transformation happens in denser classes. This relationship was disrupted during the Great Salinity Anomaly events of the 70s and 90s. Furthermore, the study highlights a faster propagation of thermohaline anomalies in the SPNA compared to the Norwegian Sea, particularly regarding temperature.
The influence of the ocean on the climate of Europe is investigated in Paper III. This study advances the understanding of how constrained ocean variability impacts the atmosphere of NorCPM. The results show a more realistic thermodynamic component of surface air temperature (SAT) over the ocean and some European regions. Paper III shows that there is potential to improve multi-annual to decadal predictions over Europe, which is currently challenging in prediction systems. The research presented in this Thesis enhances the understanding of climate predictability in the Arctic-Atlantic region. It provides insights into the interactions between the atmosphere and ocean and adds to the development of the Norwegian Climate Prediction Model, contributing to making this prediction system operational in the coming years. Following similar approaches as presented in this thesis for other dynamical prediction systems would be highly recommended.
Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.