Category: PublicationsRA2

Improving subseasonal forecast skill in the Norwegian Climate Prediction Model using soil moisture data assimilation

Nair, A.S., Counillon, F., Keenlyside, N. 2024: Improving subseasonal forecast skill in the Norwegian Climate Prediction Model using soil moisture data assimilation. Clim Dyn. https://doi.org/10.1007/s00382-024-07444-3

Summary: This study shows the importance of soil moisture (SM) in subseasonal-to-seasonal (S2S) predictions at mid-latitudes. We do this through introducing the Norwegian Climate Prediction Model Land (NorCPM-Land), a land reanalysis framework tailored for integration with the Norwegian Climate Prediction Model (NorCPM). NorCPM-Land assimilates blended SM data from the European Space Agency’s Climate Change Initiative into a 30-member offline simulation of the Community Land Model with fluxes from the coupled model. The assimilation of SM data reduces error in SM by 10.5 % when validated against independent SM observations. It also improves latent heat flux estimates, illustrating that the adjustment of underlying SM significantly augments the capacity to model land surface dynamics. We evaluate the added value of land initialisation for subseasonal predictions, by comparing the performance of hindcasts (retrospective prediction) using the standard NorCPM with a version where the land initial condition is taken from NorCPM-Land reanalysis. The hindcast covers the period 2000 to 2019 with four start dates per year. Land initialisation enhances SM predictions, reducing error by up to 2.5-month lead time. Likewise, the error for precipitation and temperature shows improvement up to a lead time of 1.5-month. The largest improvements are observed in regions with significant land-atmospheric coupling, such as the Central United States, the Sahel, and Central India. This method further enhances the prediction of extreme temperature variations, both high and low, with the most notable improvements seen in regions at mid and high latitudes, including parts of Europe, the United States, and Asia. Overall, our study provides further evidence for the significant role of SM content in enhancing the accuracy of subseasonal predictions. This study introduces a technique for improved land initialisation, utilising the same model employed in climate predictions.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Hybrid covariance super-resolution data assimilation

Barthélémy, S., Counillon, F., Brajard, J., Bertino, L. 2024: Hybrid covariance super-resolution data assimilation. Ocean Dynamics. https://doi.org/10.1007/s10236-024-01643-6

Summary: The super-resolution data assimilation (SRDA) enhances a low-resolution (LR) model with a Neural Network (NN) that has learned the differences between high and low-resolution models offline and performs data assimilation in high-resolution (HR). The method enhances the accuracy of the EnKF-LR system for a minor computational overhead. However, performance quickly saturates when the ensemble size is increased due to the error introduced by the NN. We therefore combine the SRDA with the mixed-resolution data assimilation method (MRDA) into a method called “Hybrid covariance super-resolution data assimilation” (Hybrid SRDA). The forecast step runs an ensemble at two resolutions (high and low). The assimilation is done in the HR space by performing super-resolution on the LR members with the NN. The assimilation uses the hybrid covariance that combines the emulated and dynamical HR members. The scheme is extensively tested with a quasi-geostrophic model in twin experiments, with the LR grid being twice coarser than the HR. The Hybrid SRDA outperforms the SRDA, the MRDA, and the EnKF-HR at a given computational cost. The benefit is the largest compared to the EnKF-HR for small ensembles. However, even with larger computational resources, using a mix of high and low-resolution members is worth it. Besides, the Hybrid SRDA, the EnKF-HR, and the SRDA, unlike the MRDA, prevent the smoothing of dynamical structures of the background error covariance matrix. The Hybrid SRDA method is also attractive because it is customizable to available resources.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Earth System Reanalysis in Support of Climate Model Improvements

Stammer, D., Amrhein, D.E., Alonso Balmaseda, M., Bertino, L., Bonavita, M., Buontempo, C., Caltabiano, N., Counillon, F., Fenty, I., Ferrari, R., Fujii, Y., et al. 2024: Earth System Reanalysis in Support of Climate Model Improvements. Bull. Amer. Meteor. Soc.. https://doi.org/10.1175/BAMS-D-24-0110.1

Summary: A 3-day workshop took place from 12 to 14 June 2023, at the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, focusing on data assimilation (DA) and machine learning (ML) in the context of Earth system reanalysis and climate model improvements.
The workshop, organized 25 years after the inception of the Estimating the Circulation and Climate of the Ocean (ECCO), was an effort to lay out the roadmap for future development of DA in support of climate modeling and climate knowledge improvements, or “climate DA.” The following is a summary of the workshop outcomes and recommendations arising to move the field of DA forward in the context of climate modeling.
Recent climate model developments, established through increased model resolution, have led to substantial improvements in model simulations of the time-evolving, coupled Earth system and its subcomponents. However, regardless of resolution, climate models will always produce climate features and variability that differ from the real world and will be prone to biases. This is due to many remaining uncertainties, such as in parametric and structural model uncertainty, in the initial conditions prescribed, and in the prescribed (scenario) forcing which varies on decadal to centennial time scales.
Further model improvements are expected to arise specifically from the improved representation of physical processes realized through model–data fusion. This will create an unprecedented opportunity to better exploit a large array of Earth observations, from in situ measurements to weather radars and satellite observations, as the resolved scales of the models approach those of the observations. For this, climate DA will be the central tool to bring models and observations into consistency, by improving initial conditions, inferring uncertain model parameters and structure, and quantifying uncertainty. Generally, there will be advantages and complementarities of adjoint-based smoother approaches, ensemble-based filter approaches, or new ML-inspired approaches. Yet the ever-increasing model resolution will present growing challenges arising from computational cost, calling for new ways of performing data assimilation and model optimization. Using the complementarity in a hybrid approach, blending tools and concepts from variational, ensemble, and ML methods might be what is required in the future. In this context, ML could be important to handle nonlinear responses and to better approximate non-Gaussian distributions.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect

Irvalı, N., Ninnemann, U.S., Olsen, A., Rose, N.L., Thornalley, D.J., Mjell, T.L., Counillon, F. 2024: Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect. Geochronology. https://doi.org/10.5194/gchron-6-449-2024

Summary: Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Overlapping with instrumental records, they hold the potential to elucidate natural variability and contextualize current changes. Yet, dating uncertainties of traditional approaches (e.g., up to ± 30–50 years for the last 2 centuries) pose major challenges for integrating the shorter instrumental records with these extended marine archives. Hence, robust sediment chronologies are crucial, and most existing age model constraints do not provide sufficient age control, particularly for the 20th century, which is the most critical period for comparing proxy records to historical changes. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles to reduce age model uncertainties in high-resolution marine archives. As a test, we apply this new approach to a marine sediment core located at the Gardar Drift, in the subpolar North Atlantic, and revise the previously published age model for this site. We further provide a refined estimate of regional reservoir corrections and uncertainties for Gardar Drift.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison

Bushuk, M., Ali, S., Bailey, D.A., Bao, Q., Batté, L., Bhatt, U.S., Blanchard-Wrigglesworth, E., Blockley, E., Cawley, G., Chi, J., Counillon, F., et al. 2024: Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison. Bull. Amer. Meteor. Soc.. https://doi.org/10.1175/BAMS-D-23-0163.1

Summary: This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

A simple statistical post-processing scheme for enhancing the skill of seasonal SST predictions in the tropics

Richter, I., Ratnam, J.V., Martineau, P., Oettli, P., Doi, T., Ogata, T., Kataoka, T., Counillon, F. 2024: A simple statistical post-processing scheme for enhancing the skill of seasonal SST predictions in the tropics. Monthly Weather Review. https://doi.org/10.1175/MWR-D-23-0266.1

Summary: The prediction of year-to-year climate variability patterns, such as El Niño, offers potential benefits to society by aiding mitigation and adaptation efforts. Current prediction systems, however, may still have substantial room for improvement due to systematic model errors and due to imperfect initialization of the oceanic state at the start of predictions. Here we develop a statistical correction scheme to improve prediction skill after forecasts have been completed. The scheme shows some moderate success in improving the skill for predicting El Niño and similar climate patterns in seven prediction systems. Our results not only indicate a potential for improving prediction skill after the fact but also point to the importance of improving the way prediction systems are initialized.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Intercomparison of initialization methods for Seasonal-to-Decadal Climate Predictions with the NorCPM

Garcia-Oliva, L., Counillon, F., Bethke, I., Keenlyside, N. 2024: Intercomparison of initialization methods for Seasonal-to-Decadal Climate Predictions with the NorCPM. Clim Dyn. https://doi.org/10.1007/s00382-024-07170-w

Summary: Initialization is essential for accurate seasonal-to-decadal (S2D) climate predictions. The initialization schemes used differ on the component initialized, the Data Assimilation method, or the technique. We compare five popular schemes within NorCPM following the same experimental protocol: reanalysis from 1980 to 2010 and seasonal and decadal predictions initialized from the reanalysis. We compare atmospheric initialization—Newtonian relaxation (nudging)—against ocean initialization—Ensemble Kalman Filter—(ODA). On the atmosphere, we explore the benefit of full-field (NudF-UVT) or anomaly (NudA-UVT) nudging of horizontal winds and temperature (U, V, and T) observations. The scheme NudA-UV nudges horizontal winds to disentangle the role of wind-driven variability. The ODA+NudA-UV scheme is a first attempt at joint initialization of ocean and atmospheric components in NorCPM. During the reanalysis, atmospheric nudging improves the synchronization of the atmosphere and land components with the observed data. Conversely, ODA is more effective at synchronizing the ocean component with observations. The atmospheric nudging schemes are better at reproducing specific events, such as the rapid North Atlantic subpolar gyre shift. An abrupt climatological change using the NudA-UV scheme demonstrates that energy conservation is crucial when only assimilating winds. ODA outperforms atmospheric-initialized versions for S2D global predictions, while atmospheric nudging is preferable for accurately initializing phenomena in specific regions, with the technique’s benefit depending on the prediction’s temporal scale. For instance, atmospheric full-field initialization benefits the tropical Atlantic Niño at 1-month lead time, and atmospheric anomaly initialization benefits longer lead times, reducing hindcast drift. Combining atmosphere and ocean initialization yields sub-optimal results, as sustaining the ensemble’s reliability—required for ODA’s performance—is challenging with atmospheric nudging.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Supermodeling: improving predictions with an ensemble of interacting models

Schevenhoven , F., Keenlyside, N., Counillon, F., Carrassi, A., Chapman, W.E., Devilliers, M., Gupta, A., Koseki, S., Selten, F., Shen, M.L., Wang, S. 2023: Supermodeling: improving predictions with an ensemble of interacting models. BAMS. https://doi.org/10.1175/BAMS-D-22-0070.1

Summary: The modeling of weather and climate has been a success story. The skill of forecasts continues to improve and model biases continue to decrease. Combining the output of multiple models has further improved forecast skill and reduced biases. But are we exploiting the full capacity of state-of-the-art models in making forecasts and projections? Supermodeling is a recent step forward in the multimodel ensemble approach. Instead of combining model output after the simulations are completed, in a supermodel individual models exchange state information as they run, influencing each other’s behavior. By learning the optimal parameters that determine how models influence each other based on past observations, model errors are reduced at an early stage before they propagate into larger scales and affect other regions and variables. The models synchronize on a common solution that through learning remains closer to the observed evolution. Effectively a new dynamical system has been created, a supermodel, that optimally combines the strengths of the constituent models. The supermodel approach has the potential to rapidly improve current state-of-the-art weather forecasts and climate predictions. In this paper we introduce supermodeling, demonstrate its potential in examples of various complexity, and discuss learning strategies. We conclude with a discussion of remaining challenges for a successful application of supermodeling in the context of state-of-the-art models. The supermodeling approach is not limited to the modeling of weather and climate, but can be applied to improve the prediction capabilities of any complex system, for which a set of different models exists.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Enhancing Seasonal Forecast Skills by Optimally Weighting the Ensemble from Fresh Data

Brajard, J., Counillon, F., Wang, Y., Kimmritz, M. 2023: Enhancing Seasonal Forecast Skills by Optimally Weighting the Ensemble from Fresh Data. Weather and Forecasting. https://doi.org/10.1175/WAF-D-22-0166.1

Summary: Dynamical climate predictions are produced by assimilating observations and running ensemble simulations of Earth system models. This process is time consuming and by the time the forecast is delivered, new observations are already available, making it obsolete from the release date. Moreover, producing such predictions is computationally demanding, and their production frequency is restricted. We tested the potential of a computationally cheap weighting average technique that can continuously adjust such probabilistic forecasts—in between production intervals—using newly available data. The method estimates local positive weights computed with a Bayesian framework, favoring members closer to observations. We tested the approach with the Norwegian Climate Prediction Model (NorCPM), which assimilates monthly sea surface temperature (SST) and hydrographic profiles with the ensemble Kalman filter. By the time the NorCPM forecast is delivered operationally, a week of unused SST data are available. We demonstrate the benefit of our weighting method on retrospective hindcasts. The weighting method greatly enhanced the NorCPM hindcast skill compared to the standard equal weight approach up to a 2-month lead time (global correlation of 0.71 vs 0.55 at a 1-month lead time and 0.51 vs 0.45 at a 2-month lead time). The skill at a 1-month lead time is comparable to the accuracy of the EnKF analysis. We also show that weights determined using SST data can be used to improve the skill of other quantities, such as the sea ice extent. Our approach can provide a continuous forecast between the intermittent forecast production cycle and be extended to other independent datasets.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Forecasting harmful algae blooms: Application to Dinophysis acuminata in northern Norway

Silva, E., Counillon, F., Brajard, J., Pettersson, L.H., Naustvoll, L. 2023: Forecasting harmful algae blooms: Application to Dinophysis acuminata in northern Norway.  Harmful Algae. https://doi.org/10.1016/j.hal.2023.102442

Summary: Dinophysis acuminata produces Diarrhetic Shellfish Toxins (DST) that contaminate natural and farmed shellfish, leading to public health risks and economically impacting mussel farms. For this reason, there is a high interest in understanding and predicting D. acuminata blooms. This study assesses the environmental conditions and develops a sub-seasonal (7 – 28 days) forecast model to predict D. acuminata cells abundance in the Lyngen fjord located in northern Norway. A Support Vector Machine (SVM) model is trained to predict future D. acuminata cells abundance by using the past cell concentration, sea surface temperature (SST), Photosynthetic Active Radiation (PAR), and wind speed. Cells concentration of Dinophysis spp. are measured in-situ from 2006 to 2019, and SST, PAR, and surface wind speed are obtained by satellite remote sensing. D. acuminata only explains 40% of DST variability from 2006 to 2011, but it changes to 65% after 2011 when D. acuta prevalence reduced. The D. acuminata blooms can reach concentration up to 3954 cells l−1 and are restricted to the summer during warmer waters, varying from 7.8 to 12.7 °C. The forecast model predicts with fair accuracy the seasonal development of the blooms and the blooms amplitude, showing a coefficient of determination varying from 0.46 to 0.55. SST has been found to be a useful predictor for the seasonal development of the blooms, while the past cells abundance is needed for updating the current status and adjusting the blooms timing and amplitude. The calibrated model should be tested operationally in the future to provide an early warning of D. acuminata blooms in the Lyngen fjord. The approach can be generalized to other regions by recalibrating the model with local observations of D. acuminata blooms and remote sensing data.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.