Tag: nakamura

Earth System Reanalysis in Support of Climate Model Improvements

Stammer, D., Amrhein, D.E., Alonso Balmaseda, M., Bertino, L., Bonavita, M., Buontempo, C., Caltabiano, N., Counillon, F., Fenty, I., Ferrari, R., Fujii, Y., et al. 2024: Earth System Reanalysis in Support of Climate Model Improvements. Bull. Amer. Meteor. Soc.. https://doi.org/10.1175/BAMS-D-24-0110.1

Summary: A 3-day workshop took place from 12 to 14 June 2023, at the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, focusing on data assimilation (DA) and machine learning (ML) in the context of Earth system reanalysis and climate model improvements.
The workshop, organized 25 years after the inception of the Estimating the Circulation and Climate of the Ocean (ECCO), was an effort to lay out the roadmap for future development of DA in support of climate modeling and climate knowledge improvements, or “climate DA.” The following is a summary of the workshop outcomes and recommendations arising to move the field of DA forward in the context of climate modeling.
Recent climate model developments, established through increased model resolution, have led to substantial improvements in model simulations of the time-evolving, coupled Earth system and its subcomponents. However, regardless of resolution, climate models will always produce climate features and variability that differ from the real world and will be prone to biases. This is due to many remaining uncertainties, such as in parametric and structural model uncertainty, in the initial conditions prescribed, and in the prescribed (scenario) forcing which varies on decadal to centennial time scales.
Further model improvements are expected to arise specifically from the improved representation of physical processes realized through model–data fusion. This will create an unprecedented opportunity to better exploit a large array of Earth observations, from in situ measurements to weather radars and satellite observations, as the resolved scales of the models approach those of the observations. For this, climate DA will be the central tool to bring models and observations into consistency, by improving initial conditions, inferring uncertain model parameters and structure, and quantifying uncertainty. Generally, there will be advantages and complementarities of adjoint-based smoother approaches, ensemble-based filter approaches, or new ML-inspired approaches. Yet the ever-increasing model resolution will present growing challenges arising from computational cost, calling for new ways of performing data assimilation and model optimization. Using the complementarity in a hybrid approach, blending tools and concepts from variational, ensemble, and ML methods might be what is required in the future. In this context, ML could be important to handle nonlinear responses and to better approximate non-Gaussian distributions.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Pacific oceanic front amplifies the impact of Atlantic oceanic front on North Atlantic blocking

Cheung, HN., Omrani, NE., Ogawa, F., Keenlyside, N., Nakamura, H., Zhou, W. 2023: Pacific oceanic front amplifies the impact of Atlantic oceanic front on North Atlantic blocking. npj Clim Atmos Sci 6, 61. https://doi.org/10.1038/s41612-023-00370-x

Summary: Atmospheric blocking is a crucial driver of extreme weather events, but its climatological frequency is largely underestimated in state-of-the-art climate models, especially around the North Atlantic. While air-sea interaction along the North Atlantic oceanic frontal region is known to influence Atlantic blocking activity, remote effects from the Pacific have been less studied. Here we use semi-idealised experiments with an atmospheric general circulation model to demonstrate that the mid-latitude Pacific oceanic front is crucial for climatological Atlantic blocking activity. The front intensifies the Pacific eddy-driven jet that extends eastward towards the North Atlantic. The eastward-extended Pacific jet reinforces the North Atlantic circulation response to the Atlantic oceanic front, including the storm track activity and the eddy-driven jet. The strengthening of the eddy-driven jet reduces the Greenland blocking frequency. Moreover, the Pacific oceanic front greatly strengthens the stationary planetary-scale ridge in Europe. Together with a stronger northeastward extension of the Atlantic storm track, enhanced interaction between extratropical cyclones and the European ridge favours the occurrence of Euro-Atlantic blocking. Therefore, the North Atlantic circulation response amplified remotely by the Pacific oceanic front substantially increases Euro-Atlantic blocking frequency while decreasing Greenland blocking frequency.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Evaluating Impacts of Recent Arctic Sea Ice Loss on the Northern Hemisphere Winter Climate Change

Ogawa, F., N. Keenlyside, Y. Gao, T. Koenigk, S. Yang, L. Suo, T. Wang, G. Gastineau, T. Nakamura, N. Cheung Ho, N. E. Omrani, J. Ukita, and V. Semenov, 2018: Evaluating Impacts of Recent Arctic Sea Ice Loss on the Northern Hemisphere Winter Climate Change. Geophysical Research Letters, 45, 3255-3263.

DOI: https://doi.org/10.1002/2017GL076502

Read more