Tag: counillon

Seasonal predictions initialised by assimilating sea surface temperature observations with the EnKF

Wang, Y., F. Counillon, N. Keenlyside, L. Svendsen, S. Gleixner, M. Kimmritz, P. Dai, and Y. Gao, 2019: Seasonal predictions initialised by assimilating sea surface temperature observations with the EnKF. Climate Dynamics. https://doi.org/10.1007/s00382-019-04897-9 .

Summary:This study demonstrates that assimilating SST with an advanced data assimilation method yields prediction skill level with the best state-of-the-art systems. We employ the Norwegian Climate Prediction Model (NorCPM)—a fully-coupled forecasting system—to assimilate SST observations with the ensemble Kalman filter. Predictions of NorCPM are compared to predictions from the North American Multimodel Ensemble (NMME) project. The global prediction skill of NorCPM at 6- and 12-month lead times is higher than the averaged skill of the NMME. A new metric is introduced for ranking model skill. According to the metric, NorCPM is one of the most skilful systems among the NMME in predicting SST in most regions. Confronting the skill to a large historical ensemble without assimilation, shows that the skill is largely derived from the initialisation rather than from the external forcing. NorCPM achieves good skill in predicting El Niño–Southern Oscillation (ENSO) up to 12 months ahead and achieves skill over land via teleconnections. However, NorCPM has a more pronounced reduction in skill in May than the NMME systems. An analysis of ENSO dynamics indicates that the skill reduction is mainly caused by model deficiencies in representing the thermocline feedback in February and March. We also show that NorCPM has skill in predicting sea ice extent at the Arctic entrance adjacent to the north Atlantic; this skill is highly related to the initialisation of upper ocean heat content.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Observational needs for improving ocean and coupled reanalysis, S2S Prediction, and decadal prediction

Penny SG et al. 2019: Observational needs for improving ocean and coupled reanalysis, S2S Prediction, and decadal prediction. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00391 .

Summary: Developments in observing system technologies and ocean data assimilation (DA) are symbiotic. New observation types lead to new DA methods and new DA methods, such as coupled DA, can change the value of existing observations or indicate where new observations can have greater utility for monitoring and prediction. Practitioners of DA are encouraged to make better use of observations that are already available, for example, taking advantage of strongly coupled DA so that ocean observations can be used to improve atmospheric analyses and vice versa. Ocean reanalyses are useful for the analysis of climate as well as the initialization of operational long-range prediction models. There are many remaining challenges for ocean reanalyses due to biases and abrupt changes in the ocean-observing system throughout its history, the presence of biases and drifts in models, and the simplifying assumptions made in DA solution methods. From a governance point of view, more support is needed to bring the ocean-observing and DA communities together. For prediction applications, there is wide agreement that protocols are needed for rapid communication of ocean-observing data on numerical weather prediction (NWP) timescales. There is potential for new observation types to enhance the observing system by supporting prediction on multiple timescales, ranging from the typical timescale of NWP, covering hours to weeks, out to multiple decades. Better communication between DA and observation communities is encouraged in order to allow operational prediction centers the ability to provide guidance for the design of a sustained and adaptive observing network.

Link to review article. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.