Pacific oceanic front amplifies the impact of Atlantic oceanic front on North Atlantic blocking

Cheung, HN., Omrani, NE., Ogawa, F., Keenlyside, N., Nakamura, H., Zhou, W. 2023: Pacific oceanic front amplifies the impact of Atlantic oceanic front on North Atlantic blocking. npj Clim Atmos Sci 6, 61. https://doi.org/10.1038/s41612-023-00370-x

Summary: Atmospheric blocking is a crucial driver of extreme weather events, but its climatological frequency is largely underestimated in state-of-the-art climate models, especially around the North Atlantic. While air-sea interaction along the North Atlantic oceanic frontal region is known to influence Atlantic blocking activity, remote effects from the Pacific have been less studied. Here we use semi-idealised experiments with an atmospheric general circulation model to demonstrate that the mid-latitude Pacific oceanic front is crucial for climatological Atlantic blocking activity. The front intensifies the Pacific eddy-driven jet that extends eastward towards the North Atlantic. The eastward-extended Pacific jet reinforces the North Atlantic circulation response to the Atlantic oceanic front, including the storm track activity and the eddy-driven jet. The strengthening of the eddy-driven jet reduces the Greenland blocking frequency. Moreover, the Pacific oceanic front greatly strengthens the stationary planetary-scale ridge in Europe. Together with a stronger northeastward extension of the Atlantic storm track, enhanced interaction between extratropical cyclones and the European ridge favours the occurrence of Euro-Atlantic blocking. Therefore, the North Atlantic circulation response amplified remotely by the Pacific oceanic front substantially increases Euro-Atlantic blocking frequency while decreasing Greenland blocking frequency.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Global temperatures predicted to reach new extremes in the next five years

The annual WMO Global Annual to Decadal Climate Update by the World Meteorological Organization was released last week. This is a synthesis of the global annual to decadal predictions for the period 2023-2027. The BCPU team contributes to these updates by running climate predictions with the Norwegian Climate Prediction Model. Check out Henrike Wilborn’s nice newspiece about this here !

Future strengthening of the Nordic Seas overturning circulation

Årthun, M., Asbjørnsen, H., Chafik, L., Johnson, H.L., Våge, K. 2023: Future strengthening of the Nordic Seas overturning circulation. Nat Commun. https://www.nature.com/articles/s41467-023-37846-6

Summary: The overturning circulation in the Nordic Seas involves the transformation of warm Atlantic waters into cold, dense overflows. These overflow waters return to the North Atlantic and form the headwaters to the deep limb of the Atlantic meridional overturning circulation (AMOC). The Nordic Seas are thus a key component of the AMOC. However, little is known about the response of the overturning circulation in the Nordic Seas to future climate change. Here we show using global climate models that, in contrast to the North Atlantic, the simulated density-space overturning circulation in the Nordic Seas increases throughout most of the 21st century as a result of enhanced horizontal circulation and a strengthened zonal density gradient. The increased Nordic Seas overturning is furthermore manifested in the overturning circulation in the eastern subpolar North Atlantic. A strengthened Nordic Seas overturning circulation could therefore be a stabilizing factor in the future AMOC.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Rapid sea ice changes in the future Barents Sea

Rieke, O., Årthun, M., Dörr, J.S. 2023: Rapid sea ice changes in the future Barents Sea. The Cryosphere. https://doi.org/10.5194/tc-17-1445-2023

Summary: Observed and future winter Arctic sea ice loss is strongest in the Barents Sea. However, the anthropogenic signal of the sea ice decline is superimposed by pronounced internal variability that represents a large source of uncertainty in future climate projections. A notable manifestation of internal variability is rapid ice change events (RICEs) that greatly exceed the anthropogenic trend. These RICEs are associated with large displacements of the sea ice edge which could potentially have both local and remote impacts on the climate system. In this study we present the first investigation of the frequency and drivers of RICEs in the future Barents Sea, using multi-member ensemble simulations from CMIP5 and CMIP6. A majority of RICEs are triggered by trends in ocean heat transport or surface heat fluxes. Ice loss events are associated with increasing trends in ocean heat transport and decreasing trends in surface heat loss. RICEs are a common feature of the future Barents Sea until the region becomes close to ice-free. As their evolution over time is closely tied to the average sea ice conditions, rapid ice changes in the Barents Sea may serve as a precursor for future changes in adjacent seas.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Framework for an Ocean-Connected Supermodel of the Earth System

Counillon, F., Keenlyside, N., Wang, S., Devilliers, M., Gupta, A., Koseki, S., Shen, M.-L. 2023: Framework for an Ocean-Connected Supermodel of the Earth System. JAMES. https://doi.org/10.1029/2022MS003310

Summary: Observed and future winter Arctic sea ice loss is strongest in the Barents Sea. However, the anthropogenic signal of the sea ice decline is superimposed by pronounced internal variability that represents a large source of uncertainty in future climate projections. A notable manifestation of internal variability is rapid ice change events (RICEs) that greatly exceed the anthropogenic trend. These RICEs are associated with large displacements of the sea ice edge which could potentially have both local and remote impacts on the climate system. In this study we present the first investigation of the frequency and drivers of RICEs in the future Barents Sea, using multi-member ensemble simulations from CMIP5 and CMIP6. A majority of RICEs are triggered by trends in ocean heat transport or surface heat fluxes. Ice loss events are associated with increasing trends in ocean heat transport and decreasing trends in surface heat loss. RICEs are a common feature of the future Barents Sea until the region becomes close to ice-free. As their evolution over time is closely tied to the average sea ice conditions, rapid ice changes in the Barents Sea may serve as a precursor for future changes in adjacent seas.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Latitudinally distinct stocks of Atlantic cod face fundamentally different biophysical challenges under on-going climate change

Kjesbu, O.S., Alix, M., Sandø, A.B., Strand, E., Wright, P.J., Johns, D.G., Thorsen, A., Marshall, C.T., Bakkeplass, K.G., Vikebø, F.B., Myksvoll, M.S., Ottersen, G., Allan, B.J.M., Fossheim, M., Stiansen, J.E., Huse, G., Sundby, S. 2023: Latitudinally distinct stocks of Atlantic cod face fundamentally different biophysical challenges under on-going climate change. Fish and Fisheries. https://doi.org/10.1111/faf.12728

Summary: Observed and future winter Arctic sea ice loss is strongest in the Barents Sea. However, the anthropogenic signal of the sea ice decline is superimposed by pronounced internal variability that represents a large source of uncertainty in future climate projections. A notable manifestation of internal variability is rapid ice change events (RICEs) that greatly exceed the anthropogenic trend. These RICEs are associated with large displacements of the sea ice edge which could potentially have both local and remote impacts on the climate system. In this study we present the first investigation of the frequency and drivers of RICEs in the future Barents Sea, using multi-member ensemble simulations from CMIP5 and CMIP6. A majority of RICEs are triggered by trends in ocean heat transport or surface heat fluxes. Ice loss events are associated with increasing trends in ocean heat transport and decreasing trends in surface heat loss. RICEs are a common feature of the future Barents Sea until the region becomes close to ice-free. As their evolution over time is closely tied to the average sea ice conditions, rapid ice changes in the Barents Sea may serve as a precursor for future changes in adjacent seas.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Multidisciplinary perspectives on living marine resources in the Arctic

Kvamsdal, S.F., Dankel, D., Ekerhovd, N.-A., Hoel, A.H., Renner, A., Sandø, A.B., Steinshamn, S.I. 2022: Multidisciplinary perspectives on living marine resources in the Arctic. Polar Research. https://doi.org/10.33265/polar.v41.7766

Summary: Many areas in the Arctic are vulnerable to the impacts of climate change. We observe large-scale effects on physical, biological, economic and social parameters, including ice cover, species distributions, economic activity and regional governance frameworks. Arctic living marine resources are affected in various ways. A holistic understanding of these effects requires a multidisciplinary enterprise. We synthesize relevant research, from oceanography and ecology, via economics, to political science and international law. We find that multidisciplinary research can enhance our understanding and promote new questions and issues relating to impacts and outcomes of climate change in the Arctic. Such issues include recent insights on changing spawning migrations of the North-east Arctic cod stock that necessitates revisions of socioeconomic estimates of ecosystem wealth in the Barents Sea, better integrated prediction systems that require increased cooperation between experts on climate prediction and ecosystem modelling, and institutional complexities of Arctic governance that require enhanced coordination.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Upcoming workshop: External versus internal variability on decadal and longer time scales

On Wednesday 14th September, the CLIVAR Climate Dynamics Panel (CDP) will launch the first of an intended series of annual CDP workshops. This year’s workshop will target our understanding of internal and externally forced variability in the climate system, their interaction on decadal timescales and longer, and the effects of variability on extreme events. To foster discussion that will stimulate focused research on this important topic, the workshop aims to tackle the following overarching questions:

  • How to isolate the relative contributions of external and internal variability to observed decadal and longer variability?
  • How do the various external forcings modulate internal variability?
  • How to progress in narrowing observational and modeling uncertainties in external and internal variability?
  • What are the effects of external and internal variability on extreme events?

The workshop will be online, and consist of six, weekly 2-hour sessions, from September 14th to October 19th, 2022. The sessions will be on Wednesdays with the timings varying to accommodate participation from different time zones.

Workshop program and further event information: https://www.clivar.org/events/clivar-climate-dynamics-panel-cdp-annual-workshop-external-versus-internal-variability

 

Weakening of the Atlantic Niño variability under global warming

Crespo, L.R., Prigent, A., Keenlyside, N., Koseki, S., Svendsen, L., Richter, I., Sánchez-Gómez, E. 2022: Weakening of the Atlantic Niño variability under global warming. Nat. Clim. Chang. https://doi.org/10.1038/s41558-022-01453-y

Summary: The Atlantic Niño is one of the most important patterns of interannual tropical climate variability, but how climate change will influence this pattern is not well known due to large climate model biases. Here we show that state-of-the-art climate models robustly predict a weakening of Atlantic Niños in response to global warming, mainly due to a decoupling of subsurface and surface temperature variations as the upper equatorial Atlantic Ocean warms. This weakening is predicted by most (>80%) models in the Coupled Model Intercomparison Project Phases 5 and 6 under the highest emission scenarios. Our results indicate a reduction in variability by the end of the century by 14%, and as much as 24–48% when accounting for model errors using a simple emergent constraint analysis. Such a weakening of Atlantic Niño variability will potentially impact climate conditions and the skill of seasonal predictions in many regions.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Super-resolution data assimilation

Barthélémy, S., Brajard, J., Bertino, L., Counillon, F. 2022: Super-resolution data assimilation. Ocean Dyn. https://doi.org/10.1007/s10236-022-01523-x

Summary: Increasing model resolution can improve the performance of a data assimilation system because it reduces model error, the system can more optimally use high-resolution observations, and with an ensemble data assimilation method the forecast error covariances are improved. However, increasing the resolution scales with a cubical increase of the computational costs. A method that can more effectively improve performance is introduced here. The novel approach called “Super-resolution data assimilation” (SRDA) is inspired from super-resolution image processing techniques and brought to the data assimilation context. Starting from a low-resolution forecast, a neural network (NN) emulates the fields to high-resolution, assimilates high-resolution observations, and scales it back up to the original resolution for running the next model step. The SRDA is tested with a quasi-geostrophic model in an idealized twin experiment for configurations where the model resolution is twice and four times lower than the reference solution from which pseudo-observations are extracted. The assimilation is performed with an Ensemble Kalman Filter. We show that SRDA outperforms both the low-resolution data assimilation approach and a version of SRDA with cubic spline interpolation instead of NN. The NN’s ability to anticipate the systematic differences between low- and high-resolution model dynamics explains the enhanced performance, in particular by correcting the difference of propagation speed of eddies. With a 25-member ensemble at low resolution, the SRDA computational overhead is 55 percent and the errors reduce by 40 percent, making the performance very close to that of the high-resolution system (52 percent of error reduction) that increases the cost by 800 percent. The reliability of the ensemble system is not degraded by SRDA.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.