Category: Publications2024

Publications that published in 2024

Expanding influence of Atlantic and Pacific Ocean heat transport on winter sea-ice variability in a warming Arctic

Dörr, J., Årthun, M., Eldevik, T., Sandø, A. B. 2024: Expanding influence of Atlantic and Pacific Ocean heat transport on winter sea-ice variability in a warming Arctic. Geophys Res Lett Oceans. https://doi.org/10.1029/2023JC019900

Summary: The gradual anthropogenic-driven retreat of Arctic sea ice is overlaid by large natural (internal) year-to-year variability. In winter, sea-ice loss and variability are currently most pronounced in the Barents Sea. As the loss of winter sea ice continues in a warming world, other regions will experience increased sea-ice variability. In this study, we investigate to what extent this increased winter sea-ice variability in the future is connected to ocean heat transport (OHT). We analyze and contrast the present and future link between Pacific and Atlantic OHT and the winter Arctic sea-ice cover using simulations from seven single-model large ensembles. We find strong model agreement for a poleward expanding impact of OHT through the Bering Strait and the Barents Sea under continued sea-ice retreat. Model differences on the Atlantic side can be explained by the differences in the simulated variance of the Atlantic inflows. Model differences on the Pacific side can be explained by differences in the simulated strength of Pacific Water inflows, and upper-ocean stratification and vertical mixing on the Chukchi shelf. Our work highlights the increasing importance of the Pacific and Atlantic water inflows to the Arctic Ocean and highlights which factors are important to correctly simulate in order to capture the changing impact of OHT in the warming Arctic.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.

Boosting effect of strong western pole of the Indian Ocean Dipole on the decay of El Niño events

Wu, J., H. Fan, S. Lin, W. Zhong, S. He, N. Keenlyside, Yang, S. 2024: Boosting effect of strong western pole of the Indian Ocean Dipole on the decay of El Niño events. npj Clim Atmos Sci. https://doi.org/10.1038/s41612-023-00554-5

Summary: The Indian Ocean Basin (IOB) mode is believed to favor the decay of El Niño via modulating the zonal wind anomalies in the western equatorial Pacific, while the contribution of the Indian Ocean Dipole (IOD) mode to the following year’s El Niño remains highly controversial. In this study, we use the evolution of fast and slow decaying El Niño events during 1950–2020 to demonstrate that the positive IOD with a strong western pole prompts the termination of El Niño, whereas a weak western pole has no significant effect. The strong western pole of a positive IOD leads to a strong IOB pattern peaking in the late winter (earlier than normal), enhancing local convection and causing anomalous rising motions over the tropical Indian Ocean and sinking motions over the western tropical Pacific. The surface equatorial easterly wind anomalies on the western flank of the sinking motions stimulate oceanic equatorial upwelling Kelvin waves, which shoal the thermocline in the eastern equatorial Pacific and rapidly terminate the equatorial warming during El Niño. However, a weak western pole of the IOD induces a weak IOB mode that peaks in the late spring, and the above-mentioned cross-basin physical processes do not occur.

Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.