Bachèlery ML, Brajard J, Patacchiola M, Illig S, Keenlyside N 2025: Predicting Atlantic and Benguela Niño events with deep learning. Sci. Adv.. https://doi.org/10.1126/sciadv.ads5185
Summary: Atlantic and Benguela Niño events substantially affect the tropical Atlantic region, with far-reaching consequences on local marine ecosystems, African climates, and El Niño Southern Oscillation. While accurate forecasts of these events are invaluable, state-of-the-art dynamic forecasting systems have shown limited predictive capabilities. Thus, the extent to which the tropical Atlantic variability is predictable remains an open question. This study explores the potential of deep learning in this context. Using a simple convolutional neural network architecture, we show that Atlantic/Benguela Niños can be predicted up to 3 to 4 months ahead. Our model excels in forecasting peak-season events with remarkable accuracy extending lead time to 5 months. Detailed analysis reveals our model’s ability to exploit known physical precursors, such as long-wave ocean dynamics, for accurate predictions of these events. This study challenges the perception that the tropical Atlantic is unpredictable and highlights deep learning’s potential to advance our understanding and forecasting of critical climate events.
Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.