Research Activity 1 – Mechanisms giving rise to climate predictability
Understanding the physical mechanisms driving variations in the climate system is essential for predicting their future behavior. This understanding also highlights which processes are important to correctly simulate in dynamical prediction systems, such as NorCPM, thus guiding future model improvements. Work in RA1 focuses on improved understanding of the mechanisms of atmosphere and ocean interaction in the Arctic-Atlantic, that controls climate variability and predictability. To achieve this, we analyse observational and model data, and we conduct carefully designed model experiments.
- We have demonstrated that ocean heat transport from the North Atlantic is an important source of ocean temperature variability and predictability in the Nordic Seas and Arctic Ocean (Asbjørnsen et al. 2020; Asbjørnsen et al. 2021; Langehaug et al. 2022; Fransner et al. 2023), and an important driver of sea-ice variability and retreat in the Arctic Ocean (Dörr et al. 2021; Efstathiou et al. 2022; Dörr et al. 2024a,b).
- We have also established how Arctic sea-ice variability during recent decades have been impacted by remote weather and climate patterns over the Atlantic and Pacific (Svendsen et al. 2021; Dörr et al. 2023).
- New insights have been achieved about the mechanisms of ocean-atmosphere interactions and their influence on the slow variations of the north Atlantic atmosphere and ocean circulation (Årthun et al. 2021; Omrani et al. 2022).
- We identified the critical role of the Pacific and Atlantic SST fronts, individually and combined, in sustaining North Atlantic blocking frequency (Cheung et al., 2022). Furthermore, we showed that resolving the fine structure of the North Atlantic SST front significantly improves the jet stream and blocking frequency in climate models (Athanasiadis et al., 2022).
- We examined the role of internal variability and external forcing in shaping observed coupled atmosphere-ocean multidecadal variability using the NorESM model and conceptual models we developed (Omrani et al., in preparation).
Irvalı, N., Ninnemann, U.S., Olsen, A., Rose, N.L., Thornalley, D.J., Mjell, T.L., Counillon, F. 2024: Revising chronological uncertainties in marine archives using global anthropogenic signals: a case study on the oceanic 13C Suess effect. Geochronology. https://doi.org/10.5194/gchron-6-449-2024 Summary: Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Overlapping with instrumental records, they hold the potential to elucidate natural variability and contextualize current changes. Yet, dating uncertainties of traditional approaches (e.g., up to ± 30–50 years for the last 2 centuries) pose major challenges for integrating the shorter instrumental records with these extended marine archives. Hence, robust sediment chronologies are crucial, and most existing age model constraints do not provide sufficient age control, particularly for the 20th century, which is the most critical period for comparing proxy records to historical changes. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles to reduce age model uncertainties in high-resolution marine archives. As a test, we apply this new approach to a marine sediment core located at the Gardar Drift, in the subpolar North Atlantic, and revise the previously published age model for this site. We further provide a refined estimate of regional reservoir corrections and uncertainties for Gardar Drift. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Wang, X., Zhang, Z., Yu, E., Guo, C., Otterå, O. H., Counillon, F. 2024: Warm Advection as a Cause for Extreme Heat Event in North China. Geophysical Research Letters. https://doi.org/10.1029/2024GL108995 Summary: Nowadays, heat waves have a significant impact on our society and result in substantial economic losses. Climate projections indicate that extreme heat events (EHEs) will become more frequent. However, heat waves have also often occurred in the past 300 years during periods with much lower anthropogenic forcing. One notable example is the severe heat event in the summer of 1743, which killed more than 10 thousand people in North China. The mechanism behind such events remains uncertain, making it exciting and valuable to investigate such heat waves in the past. In this study, we use a global model, a nested regional model, and tree-ring records to explore the mechanisms driving EHEs. The statistical robustness of the connection between EHEs in North China and Northeast China Vortexes is supported by modern observations. Notably, from 1950 to 2021, 63.6% of EHEs in North China coincide with active Northeast China Vortexes. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Dörr, J., Årthun, M., Docquier, D., Li, C., Eldevik, T. 2024: Causal links between sea-ice variability in the Barents-Kara Seas and oceanic and atmospheric drivers. Geophysical Research Letters. https://doi.org/10.1029/2024GL108195 Summary: The sea ice in the Barents and Kara Seas (BKS) is melting due to Arctic warming, but this is overlaid by large natural variability. This variability is caused by variations in the ocean and the atmosphere, but it is not clear which is more important in which parts of the region. We use a relatively new method that allows us to quantify cause-effect relationships between sea ice and atmospheric and oceanic drivers. We find that in the north of the BKS, the atmosphere has the biggest impact, in the central and northeastern parts, it is the heat from the ocean, and in the south, it is the local sea temperature. We also find that wind patterns over the Nordic Seas affect how much oceanic heat comes into the Barents Sea, and that, in turn, affects the sea ice. Looking ahead, as the ice is expected to melt more in the future, the atmosphere is likely to become more important in driving sea ice variability in the BKS. This study helps us better understand how the ocean and atmosphere work together to influence the yearly changes in sea ice in this region. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Zheng, Y. X., S. L. Li, N. Keenlyside, S. P. He, Suo, L.L. 2024: Projecting spring consecutive rainfall events in the Three Gorges Reservoir based on triple-nested dynamical downscaling. Adv. Atmos. Sci. https://doi.org/10.1007/s00376-023-3118-2 Summary: Spring consecutive rainfall events (CREs) are key triggers of geological hazards in the Three Gorges Reservoir area (TGR), China. However, previous projections of CREs based on the direct outputs of global climate models (GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF (Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6 (Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6, indicating larger uncertainties in the CREs projected by MIROC6. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Ashneel Chandra (2024-03-19): The Role of Ocean Heat Content on the Madden–Julian Oscillation. PhD thesis, University of Bergen, Bergen, Norway. https://hdl.handle.net/11250/3124162 Summary: The overall goal of this dissertation is to understand the role of upper ocean heat content (OHC) and equatorial ocean dynamics on the Madden-Julian Oscillation (MJO). While the response of the ocean to atmospheric forcing on intraseasonal timescales has been studied extensively, the feedback of OHC on the MJO has not been systematically investigated. Recently, a new line of research has emerged that highlights the interaction between ocean dynamics, OHC, and the MJO in the Indian Ocean (IO) basin. In the IO, synchronization between oceanic equatorial waves and the MJO is possible because of the basin-scale, the propagation speed of oceanic equatorial waves, and the timescale of MJO variability. In a series of three papers, this thesis aims to contribute to understanding the variability and interactions between the MJO, equatorial ocean dynamics, and OHC in the IO basin. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Jacob Dörr (2024-03-07): Present and future drivers of Arctic sea ice variability. PhD thesis, University of Bergen, Bergen, Norway. https://hdl.handle.net/11250/3124162 Summary: The long-term decline of the Arctic sea-ice cover is overlaid by substantial interannual to decadal internal variability. This variability is a major source of uncertainty in projections over the next decades, including the timing of a seasonally ice-free Arctic. Understanding the mechanisms of internal variability and how they modify the evolution of the sea-ice cover will enable better predictions, and help to constrain future projections of the sea-ice cover. As the Arctic becomes ice-free in summer, future sea-ice loss and variability will be largest in winter. Winter sea-ice variability is currently strongest in the Barents Sea, but as the ice edge retreats, more central regions of the Arctic Ocean will see increased sea-ice variability, where the mechanisms and drivers might be different. This thesis advances our understanding of the present and future atmospheric and oceanic drivers of winter sea-ice variability, and how internal variability has modified the observed changes in the summer and winter sea-ice cover. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Famooss Paolini, L., Omrani, N.-E., Bellucci, A., Athanasiadis, P.J., Ruggieri, P., Patrizio, C.R., Keenlyside, N. 2024: Nonstationarity in the NAO–Gulf Stream SST front interaction. J Clim. https://doi.org/10.1175/JCLI-D-23-0476.1 Summary: The interaction between the North Atlantic Oscillation (NAO) and the latitudinal shifts of the Gulf Stream sea surface temperature front (GSF) has been the subject of extensive investigations. There are indications of nonstationarity in this interaction, but differences in the methodologies used in previous studies make it difficult to draw consistent conclusions. Furthermore, there is a lack of consensus on the key mechanisms underlying the response of the GSF to the NAO. This study assesses the possible nonstationarity in the NAO–GSF interaction and the mechanisms underlying this interaction during 1950–2020, using reanalysis data. Results show that the NAO and GSF indices covary on the decadal time scale but only during 1972–2018. A secondary peak in the NAO–GSF covariability emerges on multiannual time scales but only during 2005–15. The nonstationarity in the decadal NAO–GSF covariability is also manifested in variations in their lead–lag relationship. Indeed, the NAO tends to lead the GSF shifts by 3 years during 1972–90 and by 2 years during 1990–2018. The response of the GSF to the NAO at the decadal time scale can be interpreted as the joint effect of the fast response of wind-driven oceanic circulation, the response of deep oceanic circulation, and the propagation of Rossby waves. However, there is evidence of Rossby wave propagation only during 1972–90. Here it is suggested that the nonstationarity of Rossby wave propagation caused the time lag between the NAO and the GSF shifts on the decadal time scale to differ between the two time periods. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Dörr, J., Årthun, M., Eldevik, T., Sandø, A. B. 2024: Expanding influence of Atlantic and Pacific Ocean heat transport on winter sea-ice variability in a warming Arctic. Geophys Res Lett Oceans. https://doi.org/10.1029/2023JC019900 Summary: The gradual anthropogenic-driven retreat of Arctic sea ice is overlaid by large natural (internal) year-to-year variability. In winter, sea-ice loss and variability are currently most pronounced in the Barents Sea. As the loss of winter sea ice continues in a warming world, other regions will experience increased sea-ice variability. In this study, we investigate to what extent this increased winter sea-ice variability in the future is connected to ocean heat transport (OHT). We analyze and contrast the present and future link between Pacific and Atlantic OHT and the winter Arctic sea-ice cover using simulations from seven single-model large ensembles. We find strong model agreement for a poleward expanding impact of OHT through the Bering Strait and the Barents Sea under continued sea-ice retreat. Model differences on the Atlantic side can be explained by the differences in the simulated variance of the Atlantic inflows. Model differences on the Pacific side can be explained by differences in the simulated strength of Pacific Water inflows, and upper-ocean stratification and vertical mixing on the Chukchi shelf. Our work highlights the increasing importance of the Pacific and Atlantic water inflows to the Arctic Ocean and highlights which factors are important to correctly simulate in order to capture the changing impact of OHT in the warming Arctic. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Wu, J., H. Fan, S. Lin, W. Zhong, S. He, N. Keenlyside, Yang, S. 2024: Boosting effect of strong western pole of the Indian Ocean Dipole on the decay of El Niño events. npj Clim Atmos Sci. https://doi.org/10.1038/s41612-023-00554-5 Summary: The Indian Ocean Basin (IOB) mode is believed to favor the decay of El Niño via modulating the zonal wind anomalies in the western equatorial Pacific, while the contribution of the Indian Ocean Dipole (IOD) mode to the following year’s El Niño remains highly controversial. In this study, we use the evolution of fast and slow decaying El Niño events during 1950–2020 to demonstrate that the positive IOD with a strong western pole prompts the termination of El Niño, whereas a weak western pole has no significant effect. The strong western pole of a positive IOD leads to a strong IOB pattern peaking in the late winter (earlier than normal), enhancing local convection and causing anomalous rising motions over the tropical Indian Ocean and sinking motions over the western tropical Pacific. The surface equatorial easterly wind anomalies on the western flank of the sinking motions stimulate oceanic equatorial upwelling Kelvin waves, which shoal the thermocline in the eastern equatorial Pacific and rapidly terminate the equatorial warming during El Niño. However, a weak western pole of the IOD induces a weak IOB mode that peaks in the late spring, and the above-mentioned cross-basin physical processes do not occur. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.
Boljka, L., Omrani, N.-E., Keenlyside, N. S. 2023: Identifying quasi-periodic variability using multivariate empirical mode decomposition: a case of the tropical Pacific. Weather Clim Dynam. https://doi.org/10.5194/wcd-4-1087-2023 Summary: A variety of statistical tools have been used in climate science to gain a better understanding of the climate system’s variability on various temporal and spatial scales. However, these tools are mostly linear, stationary, or both. In this study, we use a recently developed nonlinear and nonstationary multivariate time series analysis tool – multivariate empirical mode decomposition (MEMD). MEMD is a powerful tool for objectively identifying (intrinsic) timescales of variability within a given spatio-temporal system without any timescale pre-selection. Additionally, a red noise significance test is developed to robustly extract quasi-periodic modes of variability. We apply these tools to reanalysis and observational data of the tropical Pacific. This reveals a quasi-periodic variability in the tropical Pacific on timescales ∼ 1.5–4.5 years, which is consistent with El Niño–Southern Oscillation (ENSO) – one of the most prominent quasi-periodic modes of variability in the Earth’s climate system. The approach successfully confirms the well-known out-of-phase relationship of the tropical Pacific mean thermocline depth with sea surface temperature in the eastern tropical Pacific (recharge–discharge process). Furthermore, we find a co-variability between zonal wind stress in the western tropical Pacific and the tropical Pacific mean thermocline depth, which only occurs on the quasi-periodic timescale. MEMD coupled with a red noise test can therefore successfully extract (nonstationary) quasi-periodic variability from the spatio-temporal data and could be used in the future for identifying potential (new) relationships between different variables in the climate system. Link to publication. You are most welcome to contact us or the corresponding author(s) directly, if you have questions.